
MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Course Reader Principles of Safe Autonomy (ECE484)

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

ii

Sayan Mitra and others

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Course Reader Principles of Safe Autonomy (ECE484)

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Contents

Preface vii

1 Background 1
1.1 Coordinate frames and rotations 1
1.2 Exercises 5

2 Safety 7
2.1 Data and models for safety 7
2.2 Automata, State machines 8
2.3 Safety and requirements 11
2.4 Reachable states, safety, and invariance 14
2.5 Invariant properties of the unicycle lane-keeping system 17
2.6 Linear algebra representation 18
2.7 Automata under Coordinate Transformations 18

References 21
Index 23

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Preface

Course Reader for Principles of Safe Autonomy prepared 2022-26. Eternally grateful to
Pranav Sriram, Akshunna Vaishnav, Edward Guo, Arjun Ray, Chenhui Zhang, John Po-
hovey for editing and carefully reading the notes.

Sayan Mitra, Urbana
January 2026

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

1 Background

In this chapter, we review basic concepts in linear algebra, logic, probability. These con-
cepts are used throughout the rest of the notes.

1.1 Coordinate frames and rotations

We often describe the position and orientation of a vehicle using multiple coordinate
frames. The center of gravity frame is convenient for writing the equations of motion, the
camera frame is convenient for vision-based sensing, on the other hand the world frame is
convenient for navigation.

This section introduces the basic notation for frames, rotation matrices, and how to trans-
form coordinates between frames in 2D and 3D.

Let W denote a world frame with origin OW and orthonormal axes (êW
x , ê

W
y , ê

W
z). Let

B denote a body frame attached to a vehicle with origin OB and axes (êB
x , ê

B
y , ê

B
z). For a

point p, its coordinates in the two frames are written as pW = [xW , yW , zW]> and pB =

[xB, yB, zB]>.
In order to convert coordinates from body frame B to world frame W, we need to know

the position of the body frame origin OB expressed in world coordinates. Let pW
OB
∈ R3

be the coordinates of OB in the world frame; this vector gives the displacement from OW

to OB expressed in W. We also need to know the orientation of the body frame relative
to the world frame. For this purpose, we define the rotation matrix RWB ∈ R3×3 by taking
the body axes, moving them to the world origin (translation does not change direction),
expressing them in world coordinates, and stacking the resulting vectors as columns:

RWB =

[
êB

x êB
y êB

z

]
W
, (RWB)i j = êW

i · ê
B
j . (1.1)

Exercise 1.1. (a) Using the definition of rotation matrices given above construct the 2D-
rotation matrix RBA from frame A to frame B, where frame A is rotated by angle θ from
frame B. (b) For a point pA = [3,−5]> in frame A and θ = π

3 , compute the coordinates
pB = RBA pA. (c) Compute R>BARBA, what do you observe? (d) Could this calculation

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

2 Chapter 1

êB
x

êB
y

êB
z

B

êC
x

êC
y

C

êW
x

êW
y êW

z

W marker

pW

pB

Figure 1.1
A point p expressed in world and body frames.

go wrong on a computer? Why? (e) Compute the inverse RAB = R−1
BA and check that

RAB = R>BA. (f) Compute pA from pB using one of the rotation matrices.

Solution. (a) In 2D, the axes of frame A expressed in frame B coordinates are êA
x =

[cos θ, sin θ]> and êA
y = [− sin θ, cos θ]>. Stacking them gives the rotation matrix

RBA =

cos θ − sin θ

sin θ cos θ

 .
(b) With θ = π/3, c = cos θ = 1/2 and s = sin θ =

√
3/2. Then

pB = RBA pA =

c −s

s c


 3

−5

 =

3c + 5s

3s − 5c

 =

 3+5
√

3
2

3
√

3−5
2

 .
(c) R>BARBA =

 c s

−s c


c −s

s c

 =

c2 + s2 0

0 c2 + s2

 = I since c2 + s2 = 1. This is an

important property of rotation matrices called orthonormality. This implies that rotation
matrices are invertible with inverse equal to the transpose, i.e., R−1

BA = R>BA. (d) In practice,
due to floating-point round-off errors, the computed value of a rotation matrix may not be
exactly orthonormal.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Background 3

êA
x

êA
y

êB
x

êB
y

θ

O êA
x

êA
y

êA
z

êB
x

êB
y

êB
z O

Figure 1.2
Two orthonormal frames at the same origin: world axes (solid) and body axes (dashed) rotated by an
angle.

(e) The inverse is the transpose:

RAB = R−1
BA = R>BA =

 cos θ sin θ

− sin θ cos θ

 .
(f) Using pA = RAB pB with c = 1/2, s =

√
3/2 and pB = [3+5

√
3

2 , 3
√

3−5
2]>,

pA =

 c s

−s c


 3+5

√
3

2

3
√

3−5
2

 =

 3+5
√

3
4 + 9−5

√
3

4

− 3
√

3+15
4 + 3

√
3−5
4

 =

 3

−5

 .
This exercise illustrates several important facts about 2D rotation matrices.

(1) Each column of RBA is one of the axes of frame A expressed in frame B coor-
dinates. Since the columns of such a matrix are linearly independent vectors,
rotation matrices are invertible.

(2) For coordinate frames that differ by a rotation only (same origin), the mapping
between coordinates is simply pB = RBA pA. Remember the notational conven-
tion: reading the suffixes of RBA from right to left gives the mapping from frame
A to frame B.

(3) Rotation matrices are orthonormal, i.e., R>BARBA = I.
(4) Orthonormality and invertibility imply that the inverse is the transpose, i.e., R−1

BA =

R>BA.
(5) The inverse mapping is pA = RAB pB = R>BA pB.

All of these facts extend to 3D coordinate frames as well and the next exercise illustrates
this.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

4 Chapter 1

Exercise 1.2. Consider two 3D coordinate frames W (world) and B (body). Let the body
axes expressed in the world frame be

êB
x =


1
√

2
1
√

2

0

 , êB
y =


− 1

2

1
2
√

2
2

 , êB
z =


1
2

− 1
2
√

2
2

 .
. Let pW

OB
= [1, −2, 0]> be the displacement of the body frame from the world frame and

consider a point with coordinates pB = [2, 1, −1]> in the body frame.

(a) Construct RWB and check the orthonormality of the column vectors.
(b) Unlike the coordinate transformation for frames that are both at the same origin, here

we need to account for the displacement of the body frame from the world frame. The
transform from body to world coordinates is given by:

pW = pW
OB

+ RWB pB.

Compute the world coordinates pW of the point pB using this formula.
(c) Write the inverse transform from world to body coordinates.
(d) Compute pB back from pW using pB = R>WB(pW − pW

OB
) and verify it matches the

original pB.

Solution. (a) Stacking the axes gives

RWB =


1
√

2
− 1

2
1
2

1
√

2
1
2 − 1

2

0
√

2
2

√
2

2

 .
(b) First compute

RWB pB = 2êB
x + êB

y − êB
z =


√

2 − 1
√

2 + 1

0

 ,
so

pW = pW
OB

+ RWB pB =


√

2
√

2 − 1

0

 .

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Background 5

(c) Let v = pW − pW
OB

= [
√

2 − 1,
√

2 + 1, 0]>. Then

R>WBv =


êB

x · v

êB
y · v

êB
z · v

 =


2

1

−1

 = pB.

Transforming coordinates from frame B to frame A that differ by both rotation and trans-
lation requires knowing the both the position pA

OB
of the B’s origin in A coordinates and the

axes êB
x , êB

y , êB
z expressed in A coordinates. From these, we construct the rotation matrix

RAB and use the transform
pA = pA

OB
+ RAB pB.

This transformation can be interpreted as first rotating the point pB into frame A using
RAB, then translating it by pA

OB
to account for the displacement of the origins. This is

an affine transformation and can be written as linear transformation by using the trick
of homogenenous coordinates, i.e., by augmenting both the pA and pB vectors and the
transformation itself by 1: pA

1

 =

RAB pA
OB

0> 1


pB

1

 = TAB pB.

The inverse coordinate transform from A to B is:

pB = R>AB(pA − pA
OB

).

Such transforms are widely used in robotics and computer vision. Multiple coordinate
transformations can be chained together to express points from world frame to camera
frame via the body frame, for example.

1.2 Exercises

Exercise 1.3. Let R(ψ) be the 2D rotation matrix. Show that R(ψ)> = R(−ψ) and that
R(ψ)>R(ψ) = I.

Exercise 1.4. The body frame origin is at pW
OB

= [2, −1]> and the body is rotated by
ψ = π/6. A point has body coordinates pB = [1, 0.5]>. Compute pW .

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

2 Safety

2.1 Data and models for safety

When we say that a system, such as a racing drone is safe, informally, we mean to convey
that certain bad things, such as the drone crashing into a gate, almost never happens. In
this chapter, we will make this notion of safety more precise and discuss mathematical
methods for checking safety of autonomous systems. This discussion will also expose you
to mathematical models of autonomous systems, different components in such models, and
important modeling choices.

The common approach for checking any system or program, is through testing. It is
common for 30-40% of development time for a product to be spent on Before developing
a systems you must define what it means for the system to behave correctly and these are
called the requirements of the system. Safety is a particular and important kind of require-
ment. A single test for a systemA runs the system under a particular initial condition, and
with a particular sequence of inputs, and observes whether the resulting run or execution
passes or fails the requirements. For an autonomous car, testing or generating an execution
means either test driving the car on the road or running the car’s software in a simulator.
Requirements here could be, for example, that “the ego car does not collide the the lead
car” or “ego car does not leave the lane boundaries”.

What we can and cannot learn from tests? If a test violates a requirement, that can
give useful information. For example, it can pinpoint the particular input conditions (speed,
road, lighting, traffic, etc.) that led to the collision. It can also help identify the bug in the
code or the design of the software that needs to be fixed. Such a test or an execution of the
systemA is called a counter-example for the requirement.

While a finite set of tests can be used to show that a requirement is not satisfied, they
cannot prove that such a requirement is satisfied for all executions of A. This is because
A can have infinitely many executions, even if it is a finite state system (why?).

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

8 Chapter 2

“Testing can be used to show the presence of bugs, but never to show their absence!”

— Edsger W. Dijkstra

Assumtions or models can help bridge the gap. To learn or extrapolate about all—
infinitely many—executions of A form a finite sampling of executions, we need to make
some assumptions about A. A collection of these mathematical assumptions defines a
model Â forA.

Benefits of safety verification A model Â for A may be proved to satisfy the require-
ments. This proof does not “prove” anything forA (because of the “model to reality gap”),
but it can serve as evidence and explanation for why A might satisfy the requirements.
Such proofs can also be part of the certification package for A. Indeed, safety standards
for automotive and aerospace systems (e.g., DO178C) allow and encourage such models
and their proofs as part of the certification process. Furthermore, the process of certification
of invariably leads to more effective testing or usage of execution data, and identification
of the assumptions under which A can be expected to be safe. This is possibly the most
important benefit of modeling and safety analysis.

2.2 Automata, State machines

Definition 2.1. A state machineA is defined by (1) a set of states Q, (2) a set of start
states Q0 ⊆ Q, and (2) a set of transitionsD ⊆ Q × Q.

Example 2.1 Consider a simple traffic light controller at an intersection. The traffic light
can be in one of three states: Green (G), Yellow (Y), and Red (R). The initial state is G.
The transitions are as follows: from G it can go to Y , from Y it can go to R, and from R it
can go back to G. Thus, the automaton TrafficLight is defined by:

• Q = {G,Y,R}
• Q0 = {G}
• D = {(G,Y), (Y,R), (R,G)}

An execution for an automatonA is a particular run of that automaton. Mathematically,
an execution is a (possibly infinite) sequence of states q0, q1, . . . , such that q0 ∈ Q0 is a
start state and (qi, qi+1) ∈ D is a valid transition ofA.

The TrafficLight automaton has a essentially a single execution: G,Y,R,G,Y,R, Such
an execution is called infinite. An execution can also be finite, for example, G,Y,R is a
finite execution of length 3 for TrafficLight.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Safety 9

An automaton is said to be finite if its set of states Q is finite. Otherwise, it is infinite.
An automaton is deterministic if for every state q ∈ Q there is at most one state q′ ∈ Q
such that (q, q′) ∈ D. Otherwise, it is nondeterministic. TrafficLight is a finite deterministic
automaton.

Is testing a finite deterministic automaton trivial? Not always. Consider an automaton
with |Q| = 1050 states. Even if it is deterministic, testing its execution which may visit
all its states is not necessarily feasible. Testing can be hard even for seemingly simple
deterministic automata.

Example 2.2 [Collatz automaton] Consider the following automatonA over the state space
Q = N (the set of natural numbers). The initial states are Q0 = {q0} for some q0 ∈ N. The
transitionsD are defined as follows: for any state n ∈ Q,

(n, n/2) ∈ D if n is even, and (n, 3n + 1) ∈ D if n is odd.

For any given initial state q0, this automaton has a unique execution. For example, if q0 = 6
then the execution is

3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . .

which eventually loops on 4, 2, 1. However, if q0 = 7 then the execution is

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, . . .

which is much longer before it reaches the loop. Determining whether the execution for
any given q0 eventually reaches the loop 4, 2, 1 is an open problem in mathematics known
as the Collatz conjecture.

Explicitly enumerating the states and transitions of an automaton can become unwieldy
very quickly. So, we will use variables and programs to describe state machines. Actually,
programs are state machines where the valuations of the variables are the states.

Example 2.3 [Cruise control] Consider two cars moving on a straight road segment with
initial positions x20 > x10 > 0, and velocities v10 > v20 ≥ 0. Car 1 has a sensor with range
ds > 0 and it brakes with a deceleration ab > 0. Under what assumptions on the model
parameters can we show that there is no collision?

States. We assume that the cars have no lateral motion. So, the important state variables
here are the positions and the velocities of the two cars x1, x2, v1, v2 ∈ R along the road,
which we choose to be in the positive direction of the x-axis. Actually, v2 never changes
and we can make it into a constant parameter of the model instead of a state variable. So,
the state space Q for this automaton A is Q = R3. For any vector x ∈ Q, we can stack
the three state components to be in some fixed order, say x = 〈x1, x2, v1〉. Notice the state
space is uncountably infinite.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

10 Chapter 2

x

Car 1 Car 2

x1 x2
d

Figure 2.1
One-dimensional cruise control with Car 1 following Car 2.

Initial states. The initial states Q0 ofA is defined simply as

Q0 := {x ∈ Q | x.x1 = x10, x.x2 = x20, x.v1 = v10}.

Here |Q0| = 1, but in general it need not be finite or countable.

State transitions. The transitions describe how the state variables change over unit time.
In this example, the positions are updated according to the velocities. The velocity of Car
2 remains constant. The velocity of Car 1 is updated based on whether Car 2 is within
the sensor range ds or not. If Car 2 is within the sensor range, then Car 1 brakes with
deceleration ab. Otherwise, it maintains its velocity. Thus,D ⊆ Q×Q can be described by
the following code snippet:

v′1 =

max(0, v1 − ab), x2 − x1 < ds,

v1, x2 − x1 ≥ ds,

x′2 = x2 + v2,

x′1 = x1 + v′1.

What this means is that the set of transitions is

D := {(x, x′) ∈ Q × Q | x′.x2 = x.x2 + x.v2 ∧ x′.x1 = x.x1 + x′.v1

(x.x2 − x.x1 < ds)⇒ (x′.v1 := max(0, x.v1 − ab))

(x.x2 − x.x1 ≥ ds)⇒ (x′.v1 := x.v1)}.

Now we have completely defined the automatonA for this example. By the way, although
this model is very simple, one-dimensional scenarios are commonly used for safety assur-
ance arguments for cars and even aircraft landing ISO (2011); Fabris (2012); Perry et al.
(2013).

The automaton in Example 2.3 is deterministic. Do you see why? For any state x the
unique next state can be written as x′ = f (x), were f the function in the code snippet shown
above. This is not that realistic.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Safety 11

Exercise 2.1. Rewrite the code snippet to make the automaton in Example 2.3 nondeter-
ministic. For example, you can rewrite the assignment of v1 as to account for a range of
deceleration values.

v1 := choose [max(0, v1 − ab − ε),max(0, v1 − ab)]

How can we accommodate a sensor that sometimes fails? Or one that works only in some
range of relative velocities? A situation where Car 2 changes its velocity arbitrarily from a
range? For each of these cases, write the newD.

2.3 Safety and requirements

Colloquially, “safety” is often used as a catch-all for requirements of an autonomous sys-
tem. More precisely however, a requirement for a systemA is a property that all executions
of A must meet or satisfy. A safety requirement is a particular type of requirement that
states that “something bad never happens” during any execution of A. In other words, a
safety requirement forbids certain bad states from being reached at any point in time during
any execution of A. We already saw an example of a safety requirement that an “ego car
should never collide with a lead car”. An example of a bad state here is any state where
the distance between the two cars is less than or equal to zero. An example of a require-
ment that is not a safety requirement is the state n eventually reaches the loop 4, 2, 1 in the
Collatz automaton in Example 2.1.

Example 2.4 Some examples of requirements written in English are:

• A car should never come within 0.5m of another car.
• A car should never exceed the speed-limit.
• A car entering an intersection should exit it within 20 seconds.
• A car should drive at least 28 miles per gallon (mpg) over any interval in its operating

life.

The first three are related to driving safety. The last one is about performance and environ-
mental impact. All are requirements of the system.

Given an execution α we may refer to the ith state in α as α[i] = qi. The first requirement
above for our example with two cars can be written as:

∀ α,∀ k, α[k].x2 − α[k].x1 > 0.5.

Notice the quantification over all executions α and over all states α[k] in α.

Example 2.5 [Unicycle lane keeping] We use the discrete-time unicycle model of an ego
vehicle (E) following a lead vehicle (L) on a straight lane of width w. To define this model,
first, we specify the state variables and then the state transitions.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

12 Chapter 2

w
x

y

θE

E
L(xE , yE)

xL

d

Figure 2.2
Lane-keeping setup with ego vehicle E and lead vehicle L, showing the state variables and parame-
ters.

States. We assume that the lane is aligned with the world x-axis and the lead car L is
ahead of the ego car E and moves on the lane centerline. For simplicity, we model only the
longitudinal position of the lead car. For the ego car E, the state is defined by its position
and heading measured counterclockwise from the lane centerline. Thus, the full state of
the system is the vector x = [xE , yE , θE , xL]> and the state space Q of the system is R4.

Initial states. We set the initial state on the lane centerline with aligned heading, yE
0 = 0

and θE
0 = 0, and assume the lead car is ahead with xL

0 − xE
0 > dmin. This defines the set of

initial states Q0 ⊆ Q

Q0 = {(xE , yE , θE , xL) ∈ Q | yE = 0, θE = 0, xL − xE > dmin}. (2.1)

Concept break. A boolean formula involving the state variables, such as yE = 0∧θE =

0∧ xL − xE > dmin as in the above definition of Q0, defines a subset of the state space.
A boolean formula, also called a predicate P evaluates true or false for each state
x ∈ Q, i.e., P : Q→ B, and defines the subset {x ∈ Q | P(x) = true}.

Safety requirements. We want to ensure a minimum longitudinal gap dmin between the
two cars is always maintained, and that the ego car E always stays within the w/2 lateral
bounds of the centerline. These are requirements that must never be violated. Mathemati-
cally, these requirements can be expressed as safe or unsafe subsets of Q or as predicates
over Q.

Lane safety |yE | ≤ w/2 Sinlane = {(xE , yE , θE , xL) | |yE | ≤ w/2}.

Gap xL − xE ≥ dmin Sgap = {(xE , yE , θE , xL) | xL − xE ≥ dmin}.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Safety 13

State transitions. The state transitions define how the state variables change over one
time step ∆t > 0. We will describe the state transitions in three parts: (1) the ego car’s
controller decides the translational velocity vE and the rotational velocity ωE based on
current distances as sensed by E, (2) the lead car updates its position based on its bounded
velocity vL

k , and (3) the ego car updates its position.
The ego car’s controller uses several parameters: vE

max (maximum speed), ωE
max (max-

imum yaw rate), and ky (lateral feedback gain). The controller implements a bang-bang
speed control to maintain the minimum gap dmin, and a deviation-based heading controller
that steers the car back toward the centerline when yE

k , 0. We will learn more about
designing such controllers in later lectures. Here, we simply state the control law. In our
model, these equations represent how the software or the brains of the ego car decide on the
controls at each time step based on sensed inputs such as dk (gap) and yE

k (lateral position).

dk = xL
k − xE

k , (2.2)

dclose = dmin + vE
max∆t, (2.3)

vE
k =


0, |yE

k | ≥ w/2,

0, dk ≤ dclose,

vE
max, otherwise,

θE
k+1 = −ky yE

k , |θE
k+1| ≤ π/2,

ωE
k = (θE

k+1 − θ
E
k)/∆t. (2.4)

The plant dynamics for both cars are given by the discrete-time unicycle equations:

xL
k+1 = xL

k + ∆t vL
k , vL

k ∈ [0, vL
max].

xE
k+1 = xE

k + ∆t vE
k cos(θE

k),

yE
k+1 = yE

k + ∆t vE
k sin(θE

k),

θE
k+1 = θE

k + ∆tωE
k . (2.5)

These equations define how the state xk updates to xk+1 at each time step k. Notice that
xk does not uniquely determine xk+1 because vL

k is not specified by the model; this reflects
uncertainty about the lead car’s behavior. The model is nondeterministic because multiple
next states xk+1 are possible from a given xk. Combining all the equations we can write
xk+1 = f (xk, vL

k) where vL
k ∈ [0, vL

max] is an input to the system. In more detail, the values
of the state variables from the pre-state x.xE , x.yE , x.θE , x.xL, are used to first compute
the derived values x.d and then the controls x.vE , x.ωE are computed using (2.2)–(2.4) or
chosen vL ∈ [0, vL

max]. Finally, the post-state x′ is computed using (2.5). We can also define
the transition relationD ⊆ Q×Q asD = {(xk, xk+1) | xk+1 = f (xk, vL

k), vL
k ∈ [0, vL

max]}. This
defines the automatonA = 〈Q,Q0,D〉 and the Post operator for this system:

Post(S) = {x′ ∈ Q | ∃x ∈ S , vL ∈ [0, vL
max], x′ = f (x, vL)}. (2.6)

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

14 Chapter 2

2.4 Reachable states, safety, and invariance

Perspective change. To reason about all executions from a finite set of executions (or
tests) we need to represent and manipulate sets of states and executions.

To discuss sets of executions, first let us define one step transitions for automatonA over
sets of states. For any set of states S ⊆ Q

Post(S) := {x′ ∈ Q | ∃x ∈ S , (x, x′) ∈ D}.

Post function defines how a set of states S changes after every individual state in the set S
performs 1-step transition.

Exercise 2.2. (a) Write the Post function for the automaton in Example 2.3 as a logical
formula (as in the definition ofD).

(b) Write the Post function for the most general automaton you created in Exercise 2.1 as
a logical formula (as in the definition ofD).

Exercise 2.3. Show that Post() is a monotonic function. That is, if S 1 ⊆ S 2 then Post(S 1) ⊆
Post(S 2).

Thought experiment. For a deterministic automaton, given a single state x, computing
the next state generated byD is straight forward. Now that you have written a math formula
for Post, think about how you could compute Post({x}) for any single state x ∈ Q? How
would you compute Post(S) for a set S ⊆ Q? Are you assuming a particular shape for S
and a particular representation? What if S is a complicated irregular set?

The above thought experiment should convince you that computing Post(S) can become
difficult when the S , D are complex. Computing the set of all executions of length k
essentially involves computing Postk(Q0) which is inductively defined as:

Postk(S) =

 S k = 0

Post(Postk−1(S)) k > 0
(2.7)

Exercise 2.4. Prove that for any automaton A = 〈Q,Q0,D〉 the set of states reached by
any execution at the end of k transitions equals Postk(Q0). Hint. (1) To prove equality of
sets A = B, you’d want to show A ⊆ B and B ⊆ A. (2) Try induction on the length of the
execution.

Reachable states. A state x ∈ Q is said to be reachable if it is the last state of any
execution. Equivalently, Postk(Q0) is the set of states reachable after k step. Why is this
important? Well, if you wanted to check that the system is safe with respect to an unsafe
set U ⊆ Q (Starting from an initial set Q0) then all you would have to check is that all

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Safety 15

0 1 2 3 4 5 6 7
xE

3

2

1

0

1

2

3

yE

Unicycle reachable sets with sampled Post iterations
Unsafe: |yE| > w/2
Reachable set (union)
Initial set
Post 1
Post 2
Post 3
Post 4

Figure 2.3
Approximation of the reachable sets for the open-loop unicycle (left) and the closed-loop (right).
The red region is the unsafe set U. The reachable set (blue) intersects U indicating that the system is
unsafe.

reachable are not in U. That is,

∀ k ≥ 0,Postk(Q0) ∩ U = ∅.

We have already seen that this can be a requirement for a single execution (Ex-
ample 2.3). In general, computing the set of all reachable states which covers all
executions can be intractable.

The transition relationD can be complicated because of nondeterminism and nonlinear-
ity, and computing Postk(·) for large k may not terminate. The trick we will see next can
help bypassing the problem of computing Postk(·).

Invariance. The idea of invariant property or invariance is common in physics and com-
puter science. Any property or quantity related to a system that remains unchanged is an
invariant. For example, the total energy of a lossless system in an invariant. Conserved
quantities correspond to some invariant. The sum of the angles of a polygon is an invariant
under scaling and linear transformations.

For an automatonA = 〈Q,Q0,D〉 an invariant I ⊆ Q is any set of states that contains
all the reachable states, i.e., ReachA ⊆ I. Invariants are useful because, if I ∩ U = ∅

then we can infer ReachA ∩ U = ∅, which means the system is safe.

We now give a simple method for checking that a set of states I ⊆ Q is an invariant.

Proposition 2.1. For any set of states I ⊆ Q such that (i) Q0 ⊆ I and (ii) Post(I) ⊆ I,
then ∀ k, Postk(Q0) ⊆ I. That is, I is an invariant ofA, ReachA ⊆ I.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

16 Chapter 2

Proof. We prove this by induction on k.
For k = 0 (base case) Post0(Q0) = Q0 [by Definition of Postk(·)]. And, Q0 ⊆ I [by (i)].

Therefore, Post0(Q0) ⊆ I.
For k > 0 (inductive step), we assume Postk(Q0) ⊆ I. By applying Post(·) to both sides

and using monotonicity of Post(·), we get Post(Postk(Q0)) ⊆ Post(I). That is Postk+1(Q0) ⊆
Post(I). Using (ii) it follows Postk+1(Q0) ⊆ I.

Proposition 2.1 implies that if we can somehow find a set (an invariant) satisfying
conditions (i) and (ii), then we do not have to compute Postk(·) and in addition if
I ∩ U = ∅ then we can happily conclude that the system is safe.

Exercise 2.5. Let us return to Example 2.3 with the candidate invariant requirement: d :=
x2 − x1 > 0. Is this really an invariant? Can we prove this using Proposition 2.1? What
additional assumptions do we need?

Let us assume v20 = 0 for the rest of the discussion. It is easy to see that d := x2 − x1 > 0
is not an invariant. We have not said enough about the initial values of x10, x20, v10. What
if v10 is so large that in one step x1 becomes ≥ x2.

Now, let us take a different approach to find an inductive invariant. If we can upper-
bound the time that Car 1 spends after it detects Car 2, then we should be able to bound
the total distance it travels while braking. To do this, we introduce a timer into our model.

if x2 − x1 < ds

if v1 > ab

v1 := v1 − ab

timer := timer + 1
else v1 := 0

else v1 := v1

x1 := x1 + v1

Exercise 2.6. Show that the following is an invariant using Proposition 2.1:

I2 : timer + v1/ab ≤ v10/ab.

Invariant I2 is indeed an inductive invariant and it implies that timer ≤ v0/ab. This
implies that the total distance traveled by Car 1 after detection is at most v2

10/ab. Now

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Safety 17

we see that if we assume that the sensing distance ds > v2
10/ab, then the in all executions

always x2 > x1. That is, in all reachable states there is no collision.

Identifying assumptions under which the system is guaranteed to work, is a key benefit
of (absolute) safety analysis. These assumptions can be used to define what are called
operating design domains (ODD).

2.5 Invariant properties of the unicycle lane-keeping system

Proposition 2.2. Igap = {x ∈ Q | x.xL − x.xE ≥ dmin} is an invariant.

Proof. We use Proposition 2.1 to prove this. We need to check two conditions: (i) Q0 ⊆

Igap because for any state in Q0, xL
0 − xE

0 > dmin by (2.1).
(ii) Let x ∈ Igap and let x′ ∈ Post({x}). We have to show that x′ ∈ Igap. By the controller

definition (2.2), there are two cases consider because here the ego car’s speed vE
k , and

therefore, the longitudinal gap in the post state x′ only depends on the longitudinal gap in
the prestate x.d = xL

k − xE
k :

1. Close dk ≤ dclose and vE
k = 0.

2. Not close dk > dclose and vE
k = vE

max.

From the plant updates (2.5),

dk+1 = xL
k+1 − xE

k+1 = (xL
k + ∆t vL

k) − (xE
k + ∆t vE

k) = dk + ∆t(vL
k − vE

k). (2.8)

Case 1 (Close): The gap in the post-state is dk+1 = dk + ∆t vL
k ≥ dk (since vL

k ≥ 0). Also,
dk = xL

k − xE
k ≥ dmin (since x ∈ Igap).

Case 2 (Not close): The gap in the post-state is

dk+1 = dk + ∆t(vL
k − vE

max)

≥ dk − ∆t vE
max (since vL

k ≥ 0)

≥ dclose − ∆t vE
max (since not close dk = x.d > dclose)

= dmin (since dclose = dmin + vE
max∆t).

Thus x′ ∈ Igap, so Post(Igap) ⊆ Igap. By Proposition 2.1, Igap is an invariant.

Proposition 2.3. Iinlane = {x ∈ Q | |x.yE | ≤ w/2, yEθE ≤ 0, |θE | ≤ π/2} is an invariant of
the discrete-time lane-keeping model.

Proof. We use Proposition 2.1. Condition (i) holds because yE
0 = 0 and θE

0 = 0. For (ii), let
x ∈ Iinlane and let x′ ∈ Post({x}). From the heading controller, θE

k+1 = −kyyE
k so yE

k θ
E
k+1 ≤ 0

and |θE
k+1| ≤ π/2. From the plant updates (2.5),

yE
k+1 = yE

k + ∆t vE
k sin(θE

k). (2.9)

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

18 Chapter 2

If yE
k > 0, then yE

k θ
E
k ≤ 0 implies θE

k ≤ 0, and since |θE
k | ≤ π/2 we have sin(θE

k) ≤ 0. It
follows that, yE

k+1 ≤ yE
k ≤ w/2.

If yE
k < 0, then θE

k ≥ 0, and since |θE
k | ≤ π/2 we have sin(θE

k) ≥ 0. It follows that,
yE

k+1 ≥ yE
k ≥ −w/2.

If yE
k = 0, then yE

k+1 = 0. Thus |yE
k+1| ≤ w/2, and the sign condition is preserved by the

controller, so x′ ∈ Iinlane. Hence Post(Iinlane) ⊆ Iinlane, and Iinlane is an invariant.

These propositions imply that for any reachable state x of the system, x ∈ Igap and
x ∈ Iinlane. Thus, the the unicycle lane-keeping system maintains the minimum gap and
stays within the lane bounds for all time.

Not all invariants are inductive.

For example, the predicate |yE | ≤ w/2 alone is not an inductive invariant because the sign
condition yEθE ≤ 0 is needed to ensure that the lateral position does not grow unbounded.
Thus, while |yE | ≤ w/2 is an invariant (it contains all the reachable states), it is not an
inductive invariant, i.e., it cannot be proved using the two conditions of inductive invariance
in Proposition 2.1. When you have a candidate invariant, it is often useful to check if it is
inductive. If not, you may need to strengthen it by adding additional conditions as we did
above.

2.6 Linear algebra representation

We can write the discrete-time update in matrix form by collecting the full state as xk =

[xE
k , y

E
k , θ

E
k , x

L
k]T and the inputs as uk = [vE

k , ω
E
k , v

L
k]T . Then

xk+1 = xk + ∆t



cos(θE
k) 0 0

sin(θE
k) 0 0

0 1 0

0 0 1




vE

k

ωE
k

vL
k

 . (2.10)

2.7 Automata under Coordinate Transformations

In the above examples, we carefully chose the coordinate frames for the different automata
models to make the math simple. For example, in Example 2.3, we chose a 1-D world
aligned with the lane of travel of the cars. In Example 2.5, we aligned the x-axis of the
world frame with the lane centerline. In more complex scenarios, we may have to deal
with a world frame that is not aligned so conveniently. In this section, we briefly discuss
how to transform automata models under coordinate transformations. Let us consider a
general automaton A = 〈Q,Q0,D〉 where Q ⊆ Rn. Let T : Rn → Rn be a bijective

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Safety 19

xA

yA

OA

xW

yW

OW
pWA

θ

Figure 2.4
Lane-aligned frame A and a rotated, translated world frame W.

coordinate transformation function with inverse T−1. We can define a new automaton
AT = 〈QT ,Q0,T ,DT 〉 where QT = {T (x) | x ∈ Q}, Q0,T = {T (x) | x ∈ Q0}, and

DT = {(xT , x′T) ∈ QT × QT | (T−1(xT),T−1(x′T)) ∈ D}. (2.11)

Equivalently, (x, x′) ∈ D if and only if (T (x),T (x′)) ∈ DT .
As a concrete example, consider the 1-D collision automaton A in Example 2.3 where

the cars move along a lane-aligned frame A. We embed this model in 2D by assigning
each car a constant lateral coordinate yA = 0. Let pA

i = [xA
i , yA

i]> for i ∈ {1, 2}, and let
eA

x = [1, 0]> denote the lane direction. Define a rigid transform from the lane-aligned
frame A to a world frame W by

TWA(pA) = RWA pA + pWA, RWA =

cos θ − sin θ

sin θ cos θ

 . (2.12)

The induced transformation on the state applies TWA to each position and leaves the scalar
speed v1 unchanged.

In the lane-aligned frame, yA
1 = yA

2 = 0 and the transitions are

v′1 =

max(0, v1 − ab), xA
2 − xA

1 < ds,

v1, xA
2 − xA

1 ≥ ds,

pA′
1 = pA

1 + v1eA
x ,

pA′
2 = pA

2 + v2eA
x .

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

20 Chapter 2

Applying TWA to both the pre- and post-states gives the transformed transition relationDT

in W:

v′1 =

max(0, v1 − ab), d < ds,

v1, d ≥ ds,

pW′
1 = pW

1 + v1RWAeA
x ,

pW′
2 = pW

2 + v2RWAeA
x ,

where the longitudinal gap can be expressed in transformed coordinates as

d = xA
2 − xA

1 = (eA
x)>R>WA(pW

2 − pW
1) = cos θ(xW

2 − xW
1) + sin θ(yW

2 − yW
1). (2.13)

Thus, the simple 1-D motion becomes motion along a fixed line in the rotated frame, and
the braking condition depends on the projection of the separation vector onto the original
lane direction.

Proposition 2.4. For any bijection T , every transition of A maps to a unique transition
of AT , and vice-versa. Consequently, if α = x0, x1, . . . is an execution of A, then T (α) =

T (x0),T (x1), . . . is an execution ofAT . Moreover, for any S ⊆ Q,

PostT (T (S)) = T (Post(S)),

and a set I is an invariant forA if and only if T (I) is an invariant forAT .

Exercise 2.7. Write the inverse transform T−1
WA and verify that pA = T−1

WA(pW) = R>WA(pW −

pWA).

Solution. Since pW = RWA pA + pWA, subtract pWA and multiply by R>WA to get pA =

R>WA(pW − pWA). Hence T−1
WA(pW) = R>WA(pW − pWA).

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

References

Fabris, Simone. 2012. Method for hazard severity assessment for the case of undemanded decelera-
tion, Technical report, TRW Automotive.

ISO. 2011. Road vehicles—functional safety, Technical Report ISO 26262, International Organiza-
tion for Standardization (ISO).

Perry, Raleigh B., Michael M. Madden, Wilfredo Torres-Pomales, and Ricky W. Butler. 2013.
The simplified aircraft-based paired approach with the ALAS alerting algorithm, Technical Report
NASA/TM-2013-217804, NASA, Langley Research Center.

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

MITPress NewMath.cls LATEX Book Style Size: 7x9 January 16, 2026 8:22pm

Index

automaton, 8

coordinate frame, 1

deterministic, 10

execution, 8

homogeneous coordinates, 5

invariant, 15

nondeterministic, 10

Post, 14, 16

requirement, 8, 11
rotation matrix, 1

state machine, 8

testing, 8
tests, 8

	Preface
	1 Background
	1.1 Coordinate frames and rotations
	1.2 Exercises

	2 Safety
	2.1 Data and models for safety
	2.2 Automata, State machines
	2.3 Safety and requirements
	2.4 Reachable states, safety, and invariance
	2.5 Invariant properties of the unicycle lane-keeping system
	2.6 Linear algebra representation
	2.7 Automata under Coordinate Transformations

	References
	Index

