> A
Al
: =l iy
/// £l
g - Principles of Safe Autonomy
sl - gilEgs e - ECE484SP'26
| BEgEits s ih - \Lecture 2
Professor: Sayan Mitra

Jan 22, 2026

https://safeautonomy-
illinois.github.io/ece484-site/

https://mitras.ece.illinois.edu/
https://mitras.ece.illinois.edu/
https://mitras.ece.illinois.edu/
https://mitras.ece.illinois.edu/
https://mitras.ece.illinois.edu/

ne

Outl

Motivation

Administrivia

Introduction to Safety

Models

Requirements

Proofs

Automata or state machine models

An A is defined by a triple (Q, Qy, D), where
Q is a set of
Qo € Q isasetof

D C (Q XQisasetof
An of A is a finite or infinite sequence qy, q4, ... such that g, € Q, and (g;,q;+1) € D

Example: Traffic light automaton
Q ={G,Y,R} Qo ={G} 0 ‘
D ={(G,Y),(Y,R), (R, G)}

Execution of traffic light G,Y,R,G,Y, R ... infinite even though finite state

Requirements and Counter-examples

Requirements define what the system must and must not do
Example: “Car stays within speed limit”

Autonomous car: “Ego should not collide with lead car”
Collatz: “Every number eventually ends in the 4-2-1 cycle”

A defines a set R of allowed executions

An execution a that isnotin the set Ris a

={a| Ak a, =1}

An automaton A a requirement R if all executions of A satisfies R

R

eventually-1

Whether the Collatz automaton satisfies the requirement Ry, ¢q.,a1,-1 fOr all initial conditions
remains an open problem, although no counter-example has been found up to 27°

This is an example of a

Verification problem

: Given an automaton A4 and a requirement R, check whether
all executions of A satisfy R or find a counter-example

Testing or checking individual executions can help find counter-examples but
cannot show that there is no counter-example

Verification can be hard because

|Q| is finite but large and testing may require visiting all the states (e.g.,
Collatz)

|Q| is small but the number of executions is very large

|Q| may be infinite and D may be nondeterministic --- typical for autonomous
system

Example: Automatic Emergency Braking (AEB

Car must brake to maintain safe gap with lead
vehicle/pedestrian

There is no standard for checking correctness of AEB
systems

Future: Every code commit in github from an AEB
engineer, proves a theorem establishing A satisfies R,

>

www.google.com > patents
US20110168504A1 - Emergency braking system - Google ...

Jump to Patent citations (18) - US4053026A * 1975-12-09 1977-10-11 Nissan Motor Co., Ltd. Logic
circuit for an automatic braking system for a motor ...

‘www.google.com » patents

US5170858A - Automatic braking apparatus with ultrasonic ...

An automatic braking apparatus includes: an ultrasonic wave emitter provided in a ... Info: Patent
citations (13); Cited by (7); Legal events; Similar documents; Priority and ... US6523912B1 2003-02-25
Autonomous emergency braking system.

www.google.com > patents

DE102004030994A1 - Brake assistant for motor vehicles ...

BB0T7/22 Brake-action initiating means for automatic initiation; for initiation not ... Info: Patent citations
(3): Cited by (9); Legal events; Similar documents ... data from the environment sensor and then
automatically initiates emergency braking.

‘www.google.com.pg » patents
Braking control system for vehicle - Google Patents

An automatic emergency braking system for a vehicle includes a forward viewing camera and a
control. At least in part responsive to processing of captured ..

www.automotiveworld.com » news-releases > toyota-ip... ¥
Toyota IP Solutions and IUPUI issue first commercial license ...

Jul 22, 2020 - ... and validation of automotive automatic emergency braking (AEB) ... and Director of
Patent Licensing for Toyota Motor North America. “We are ...

insurancenewsnet.com » oarticle » patent-application-tit... ~

Patent Application Titled “Multiple-Stage Collision Avoidance ...
Apr 3, 2019 - No assignee for this patent application has been made. ... Automatic emergency braking
systems will similarly, also, soon be required for tractor ...

Automaton model of AEB

Automaton A = (Q, Qy, D)
>Q: [x11x21v1] €]RS

Vehicle Motion with Nondeterministic Braking

= Qo = {lx1 = X10,X2 = X0, V1 = V10]} »f — vencernn

I Vehicle 1 (Run 2)

-D € Q X Q written as a program | T Vehicle 1 (Run 3) =

N e Vehicle 2

H: xz - x1 S dsen

N
S)
)

vy € [v1 — aqp,v1 — ayp]
Xy = Xy + Uy
x1 = x1 + Ul

Position (m)

vy € [vy — aqp, v — gyl

N
o

=
o o

0 5 10 15 20 25 30
Time (s)

Automaton model of AEB

Automaton A = (Q, Qy, D)
-Q:R%;q€Qq.x;,q.x, ER
Qo =1q1[9.x1 = x10,q.x; =
X20,q-V1 = Vig]}
-(q,q') € D iff
fq.x, —q.x;1 < dg.
q'.vi €lq.vy — a1y, q. vy — ay]

q'.x, =q.x, +q.1v,
q’.xl — q.x1 + q vl

Vehicle Motion with Nondeterministic Braking

~
o

1 —— Vehicle 1 (Run 1)

Vehicle 1 (Run 2)
—— Vehicle 1 (Run 3)
| — Vehicle 2

Position (m)
D wm ()]
o o o

w
o
L

N
o
1

If Xy —Xq < dsen

[y
o
1

o
1

vy € [y

— Aip, V1 — aZb]

6 é 1T0 1'5 2'0
Time (s)

25 30

Decision & .

Perception
Control

Testmg and verification

What is missing in the AEB model?

|f xZ — x1 S 20
vy € [vg — aqp,v1 — ayp]
else vy = vy
xZ — XZ + vz
x1 = Xl + vl

Acceleration, friction in dynamics
Uncertainty in sensing

Uncertainty in lead vehicle behavior
Timing of execution of control loop

|II

“All models are wrong, but some are usefu

Safety and liveness requirements

Ryap = la | Via;.x; > a;.x;} non-zero gap Uyqp =1q19.x; — q.x; < 0}
Rsp—1im =1{a | Via;.v; < 70} speed limit Ugy_1im = 1919.x, = 70}
Reatch—up =t 302 > a;.x; —a;.x; > 13 catch eventually

A says that every state along every execution should stay in safe states

Equivalently, no execution of A ever reaches any unsafe states

Ryap and Rgy_yim are safety requirements with Uy, and Ugy_ iy as the unsafe sets

R atch—up is Not a safety requirement; it is an example of a

A liveness requirement says that along every execution eventually some good state is reached

>

4

Q

g—

©

ol i

L 2 5
(.m - c 9
)
- ST 2 v ¢ %
— (@) Q S =
5 > £ — O w 5
2 g Q0 = x =

O | -

O 2z
M <C < ° ° °

Safety verification: Finite State Automata

: Given an automaton A and an unsafe set U, check
whether there exists any execution a of A that reaches U

Counter-examples of safety are finite executions ending in U

For finite automata, safety verification can be solved using depth first search from

Qo
Consider {Q, Q,, D) as a directed graph with (Q, D)

DFS computes all paths or executions from Q,
If none of these executions hit U there is no counter-example
Absence of a counter-example proves that the automaton is safe

In practice, explicit enumeration of all paths may not scale to large graphs

Safety verification and Reachability: Infinite State Spaces

Astateq € Q is if there exists an execution a such that a; = q.
C (the set of reachable states of A from Q,

Safety verification problem is equivalent to as checking Reach, N U = @?

That s, if we can compute Reach, then we can verify safety

Finite state systems DFS computes Reach,(Q,)

For infinite state systems, we need:

Representation of infinite sets of states Q unreachable

Iteratively computing Reachy

Computing reachable sets and over-approximations

Define that gives all the states that can
be reached in one step from the set of states R

For a deterministic system Post({q}) = q' for (q,q") € D

For finite R, Post(R) =U,cr Post({q})

Post(Q,) ={q |3 qy € Qo, (g9, q) € D} states reachable in 1 step from Q,
Post(Post(Qo)) =7

Infinite sets & nondeterministic Post(R) requires some representation of sets

Example:
Q = [x1:R] D:xq = x1 + v1 then R = [a,b] Post(R) = [a + v1,D + vp]
Q = R*then R = [a, b] then Post(R) is a hyperrectangle

Generally, for nonconvex R nonlinear D exact Post(R) may be infeasible

We use over-approximation Post(R) such thatPost(R) € Post(R)

Reachable sets and over-approximations

Reachability(4 = (Q, Qy, D))

Ry = Qg

R, =0

(=0

do
R;+1 = Post (R;) UR;
i=i+1

Until R; # R;_4

Return R;

Exercise. Show that Post and Post is monotonic, i.e., If §1 S S, then
Post(S1) € Post(S,).

Exercise. Show that all states that are reachable in exactly k steps is
Post®(Q,).

Exercise. If this algorithm terminates and returns R then Reach,(Qy) € R,
i.e., it computes an over-approximation of the reachable sets of A.

R n Unsafe = @ proves safety, but Reach,(Q,) N Unsafe # @ does not
imply that there is a real counterexample

Invariants and safety verification

Aset] € Qisaninvariant if Reachy(Qq) € 1
Over-approximates the reachable states, not unique, and define everything that can happen

If the algorithm terminates, it returns an invariant which may or may not prove safety

Reach

Q

System is safe but and I N Unsafe # @ and I, nUnsafe #Q
verified by invariant I, system is unsafe but svstem is safe

Example: Lane-keeping

Example. Vehicle (E) with braking and lane-keeping controller
Q: [xE,yE, 0%, x1] € R* and velocities are chosen in each step

See course reader for definition of D

Reachable sets

Open-loop

Unicycle reachable sets with sampled Post iterations

3 -
Unsafe: ¥ = w2 -
Reachable set (union) .'
® Initial set L ;
21 Fost 1 -
= Post2
Post3 - - e = 1 " .l’.
14 » Posta : aa s i Pl 4 .
| pin = e
L
.
0 % °
LN
L] L]
=11 ., "
=21 %}
™) * L] * L]
.
-3 1 r T T T 1 r . :
0 1 2 3 4 5 [7
x.l:

Closed-loop

Closed-loop reachable sets with sampled Post iterations

4.0 Unsafe: |y"] = wi2
Reachable sel (union)
1.5 1 Initial set
Post 1
i Post 2
1.0 Post 3
Past 4
0.5 4
:
0.0 1 L
0.5 Ay
=1.0 -
=1.5 4
-2.0
1] 1 2 3 4

Summary

Canvas quiz:

https://canvas.illinois.edu/courses/67113/assignments/15632057?displ
ay=full width with nav

Verification is the problem of proving/disproving requirements

Safety requirements state Unsafe things never happen OR
All reachable states are disjoint from unsafe sets Reach, N Unsafe = @

For finite state systems explicit reachability possible via DFS

In general, reachability and verification are hard (state space explosion,
undecidability)

k
We can over-approximate Reachy € Post (Q,)

https://canvas.illinois.edu/courses/67113/assignments/1563205?display=full_width_with_nav
https://canvas.illinois.edu/courses/67113/assignments/1563205?display=full_width_with_nav

Verse: Python library for reachability analysis (MPO)

class Mode(Enum): _ T2
Normal = auto() I/
Up = auto() |
class Track(Enum): is’ I \\ T1
TO = auto() \
T1 =auto() N
= TO
class State: | X
x: float z
y: float

gl = QuadrotorAgent(“ql", ...) // Defines the dynamics
gl.set_initial([...], (Mode.Normal, Track.T1))
scenario.add_agent(ql)

g2 = ...

scenario.set_map(M5())
scenario.simulate(...)

scenario.verify(...)

mode: Mode
track: Track

def decisionLogic(ego: State, others: List[State], map):
if ego.mode == Normal:
if any(isClose(ego, other) for other in others):

if map.exist(ego.track, ego.mode, Up):
next.mode = Up
next.track = map.h(ego.track, ego.mode, Up)

if map.exist(ego.track, ego.mode, Down):
next.mode = Down

assert not any(isVeryClose(ego, other) for other in others), "Seperation”

Verse: Python library for reachability analysis (MPO)

class Mode(Enum): - T2
Normal = auto()
Up = auto() /

class Track(Enum): %’ S T1

TO = auto()
T1 = auto()

class State:
x: float
y: float

gl = QuadrotorAgent(“ql", ...)
gl.set_initial([...], (Mode.Normal, Track.T1))
scenario.add_agent(ql)
g2 = ...
scenario.set_map(M5())
scenario.simulate(...)
scenario.verify(...)

mode: Mode
track: Track

def decisionLogic(ego: State, others: List[State], map):
if ego.mode == Normal:
if any(isClose(ego, other) for other in others):

if map.exist(ego.track, ego.mode, Up):
next.mode = Up
next.track = map.h(ego.track, ego.mode, Up)

if map.exist(ego.track, ego.mode, Down):
next.mode = Down

assert not any(isVeryClose(ego, other) for other in others), "Seperation”

Inductive invariants

Proposition 1. If (i) Q, € I and (i) Post(I) € I then I is an invariant, i.e., Reach, S I.
Such invariants are called

Proof. Consider any reachable state q € Reach, € @

By definition of reachable state, there is an execution a with a;, = q

By induction on k we will show that q € I

Base case, for k=0, ay = qo € Qg S I [using definition of execution and (i)]
Induction. By inductive hypothesis, suppose a; € I. We have to show q = a1 € I.
q € Post(a;) [Definition of Post, (ay,q) € D]

q € Post(1) [Monotonicity of Post. a; € I = Post(a;) S Post(l)]

qcl [By (ii)]

Inductive invariants and Safety

Guess a candidate inductive invariant I

fINnUnsafe =@ and Q, €I and Post(l) S|
then by the Proposition 1 Reach, € I and we have
verified safety

If the start and transition conditions fail, that does
not imply that I is not an invariant

It only implies that I cannot be checked inductively
by Proposition 1.

System is safe and
verified by the inductive
invariant

Revisiting AEB

To prove no crash x, > x4 in all reachable states, we will need
assumptions about initial conditions (x1q, X209, V10, V20), SENSING
distance (d.), and braking acceleration (a;)

Discovering these assumptions (for system correctness) is a valuable

side-effect of verification

2
Vio

ab
The proof of correctness (as expected) will relate total time of braking

with the initial separation. We need a timer

Assumption: X, — X109 > dg >

Checking Inductive Invariant for AEB

Bound on total braking time in terms of

. . v 1%
Invariant. I;: timer + —+ < -

_ ap ap velocity and deceleration
lt]lr;er__f <4 Proof. We need to check two conditions for this to be an inductive
2 1 —=Ms
fv, > a, invariant: (i) Qo € I; and (ii) Post(l,) € I,.
Vi =V~ Gp (i) Considerany q € Qy. We need to show q € I;.
timer :=timer+1) q.vq V10 V1o
else q.tlmer+a—b=0+a—bsa—b.
=0 . : :
e|sev1 (ii) Consider any (g, q') € D with g € I,. We need to show q' € I;.
V) =g As there are three branches in D, there are 3 cases.
Xy =X T 13 ;o q' vy : qvi—ap . qvi _ V1o
i —_— = <
%5 = %, + vy (a) q'.timer + ” q.timer + 1 + ” q.timer + .
!/
(b) q'.timer + qa'vl = q.timer + 0 < %
b b
!/
(c) q'.timer + qa'zl = q.timer + % < 1;—1;

. 1%
I,: timer < =
ap

Invariants and assumptions give correctness proof

Consider any two reachable states:
g1 is where x, — x; < dg became true first, and

g, is reached from g; with q,.x, — g,.x; < d; (other reachable states are safe)
d2-X2 — (2. X1

> (g1.Xy — (5. Xq |1, Because x, increased]

> 1.X; —qq1. X1 — vlo.%’ [I, = timer < 7;1; and qz. X1 < q1.%1 + V1o 210
2

>ds—% [By def of g4 |
b

>0 [By Assumption]

Summary

Testing alone is inadequate---in theory and practice

Automaton (state machine) models, executions, and requirements give
us the language to state correctness claims precisely

Verification is the problem of proving/disproving such claims
Safety claims are a (prevalent) subset of correctness claims
Reachability analysis can prove/disprove safety

In general, reachability and verification are hard (state space explosion,
undecidability)

Inductive invariants over-approximating reachable states give a
practical method for proving safety

	Slide 1: Principles of Safe Autonomy ECE 484 SP’26 Lecture 2
	Slide 2: Outline
	Slide 3: Automata or state machine models
	Slide 4: Requirements and Counter-examples
	Slide 5: Verification problem
	Slide 6: Example: Automatic Emergency Braking (AEB)
	Slide 7: Automaton model of AEB
	Slide 8: Automaton model of AEB
	Slide 9: What is missing in the AEB model?
	Slide 10: Safety and liveness requirements
	Slide 11: Outline
	Slide 12: Safety verification: Finite State Automata
	Slide 13: Safety verification and Reachability: Infinite State Spaces
	Slide 14: Computing reachable sets and over-approximations
	Slide 15: Reachable sets and over-approximations
	Slide 16: Invariants and safety verification
	Slide 17: Example: Lane-keeping
	Slide 18: Reachable sets
	Slide 19: Summary
	Slide 20: Verse: Python library for reachability analysis (MP0)
	Slide 21: Verse: Python library for reachability analysis (MP0)
	Slide 22: Inductive invariants
	Slide 23: Inductive invariants and Safety
	Slide 24: Revisiting AEB
	Slide 25: Checking Inductive Invariant for AEB
	Slide 26: Invariants and assumptions give correctness proof
	Slide 27: Summary

