



Principles of Safe Autonomy

ECE 484 SP'26

Lecture 2

Professor: Sayan Mitra
Jan 22, 2026

<https://safeautonomy-illinois.github.io/ece484-site/>

Outline

Motivation

Administrivia

Introduction to Safety

- Models
- Requirements
- Proofs

Automata or state machine models

An **automaton** A is defined by a triple $\langle Q, Q_0, D \rangle$, where

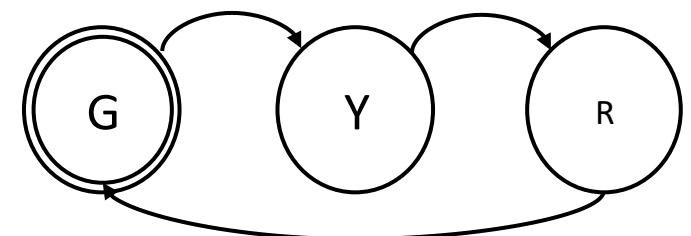
- ▶ Q is a set of **states**
- ▶ $Q_0 \subseteq Q$ is a set of **initial states**
- ▶ $D \subseteq Q \times Q$ is a set of **transitions**

An **execution** of A is a finite or infinite sequence q_0, q_1, \dots such that $q_0 \in Q_0$ and $(q_i, q_{i+1}) \in D$

Example: Traffic light automaton

- ▶ $Q = \{G, Y, R\}$ $Q_0 = \{G\}$
- ▶ $D = \{(G, Y), (Y, R), (R, G)\}$

Execution of traffic light $G, Y, R, G, Y, R \dots$ infinite even though finite state



Requirements and Counter-examples

Requirements define what the system must and must not do

Example: “Car stays within speed limit”

Autonomous car: “Ego should not collide with lead car”

Collatz: “Every number eventually ends in the 4-2-1 cycle”

A **requirement** defines a set R of allowed executions

An execution α that is not in the set R is a **counter-example**

$$R_{\text{eventually-1}} = \{\alpha \mid \exists k \alpha_k = 1\}$$

An automaton A **satisfies** a requirement R if *all* executions of A satisfies R

Whether the Collatz automaton satisfies the requirement $R_{\text{eventually-1}}$ for all initial conditions remains an open problem, although no counter-example has been found up to 2^{70}

This is an example of a **verification problem**

Verification problem

Verification problem: Given an automaton A and a requirement R , check whether all executions of A satisfy R or find a counter-example

Testing or checking individual executions can help find counter-examples but cannot show that there is no counter-example

Verification can be hard because

- ▶ $|Q|$ is finite but large and testing may require visiting all the states (e.g., Collatz)
- ▶ $|Q|$ is small but the number of executions is very large
- ▶ $|Q|$ may be infinite and D may be nondeterministic --- typical for autonomous system

Example: Automatic Emergency Braking (AEB)

Car must brake to maintain safe gap with lead vehicle/pedestrian

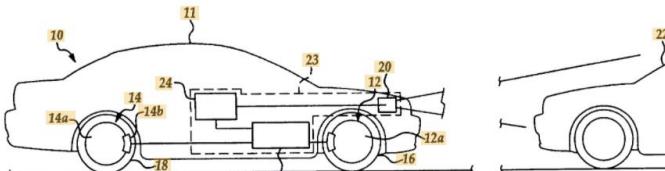


Figure 1

There is no standard for checking correctness of AEB systems

Future: Every code commit in github from an AEB engineer, **proves a theorem** establishing A satisfies R_{gap}

www.google.com > patents

[US20110168504A1 - Emergency braking system - Google ...](https://patents.google.com/patent/US20110168504A1)

Jump to [Patent citations](#) (18) - [US4053026A](#) * 1975-12-09 1977-10-11 Nissan Motor Co., Ltd. Logic circuit for an automatic braking system for a motor ...

www.google.com > patents

[US5170858A - Automatic braking apparatus with ultrasonic ...](https://patents.google.com/patent/US5170858A)

An automatic braking apparatus includes: an ultrasonic wave emitter provided in a ... Info: Patent citations (13); Cited by (7); Legal events; Similar documents; Priority and ... [US6523912B1](#) 2003-02-25 Autonomous emergency braking system.

www.google.com > patents

[DE102004030994A1 - Brake assistant for motor vehicles ...](https://patents.google.com/patent/DE102004030994A1)

[B60T7/22](#) Brake-action initiating means for automatic initiation; for initiation not ... Info: Patent citations (3); Cited by (9); Legal events; Similar documents ... data from the environment sensor and then automatically initiates emergency braking.

www.google.com.pg > patents

[Braking control system for vehicle - Google Patents](https://patents.google.com/patent/Braking%20control%20system%20for%20vehicle)

An automatic emergency braking system for a vehicle includes a forward viewing camera and a control. At least in part responsive to processing of captured ...

www.automotiveworld.com > news-releases > [toyota-ip...](#) ▾

[Toyota IP Solutions and IUPUI issue first commercial license ...](https://www.automotiveworld.com/news-releases/toyota-ip/Toyota-IP-Solutions-and-IUPUI-issue-first-commercial-license)

Jul 22, 2020 - ... and validation of automotive automatic emergency braking (AEB) ... and Director of Patent Licensing for Toyota Motor North America. "We are ...

insurancenewsnet.com > oarticle > [patent-application-tit...](#) ▾

[Patent Application Titled "Multiple-Stage Collision Avoidance" ...](https://www.insurancenewsnet.com/oarticle/patent-application-tit/Patent-Application-Titled-Multiple-Stage-Collision-Avoidance)

Apr 3, 2019 - No assignee for this patent application has been made. ... Automatic emergency braking systems will similarly, also, soon be required for tractor ...

Automaton model of AEB

Automaton $A = \langle Q, Q_0, D \rangle$

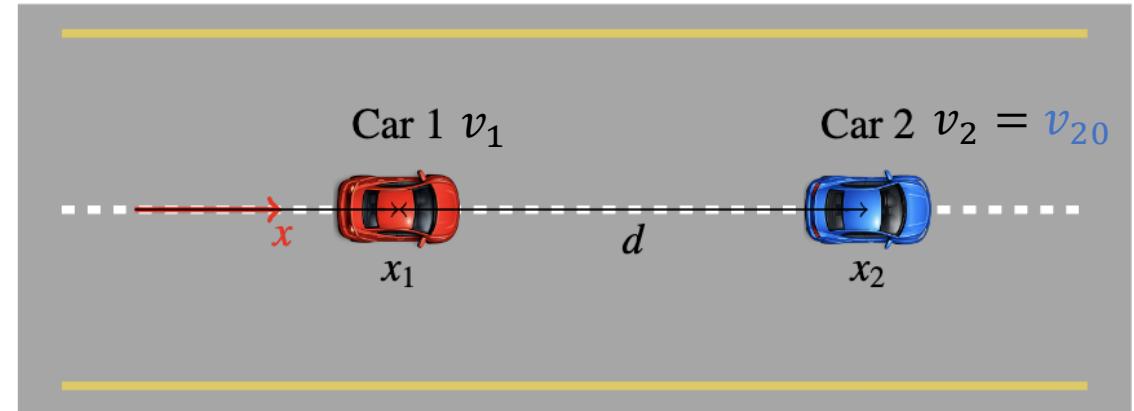
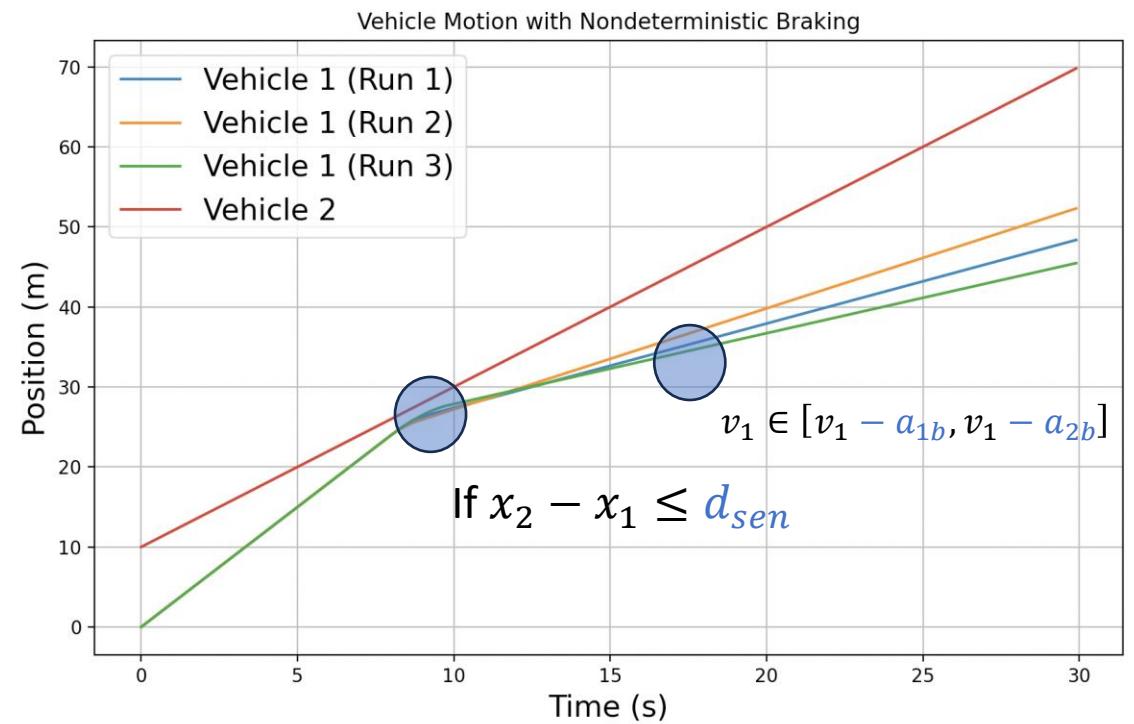
- $Q: [x_1, x_2, v_1] \in \mathbb{R}^3$
- $Q_0 = \{[x_1 = x_{10}, x_2 = x_{20}, v_1 = v_{10}]\}$
- $D \subseteq Q \times Q$ written as a program

If $x_2 - x_1 \leq d_{sen}$

$$v_1 \in [v_1 - a_{1b}, v_1 - a_{2b}]$$

$$x_2 = x_2 + v_2$$

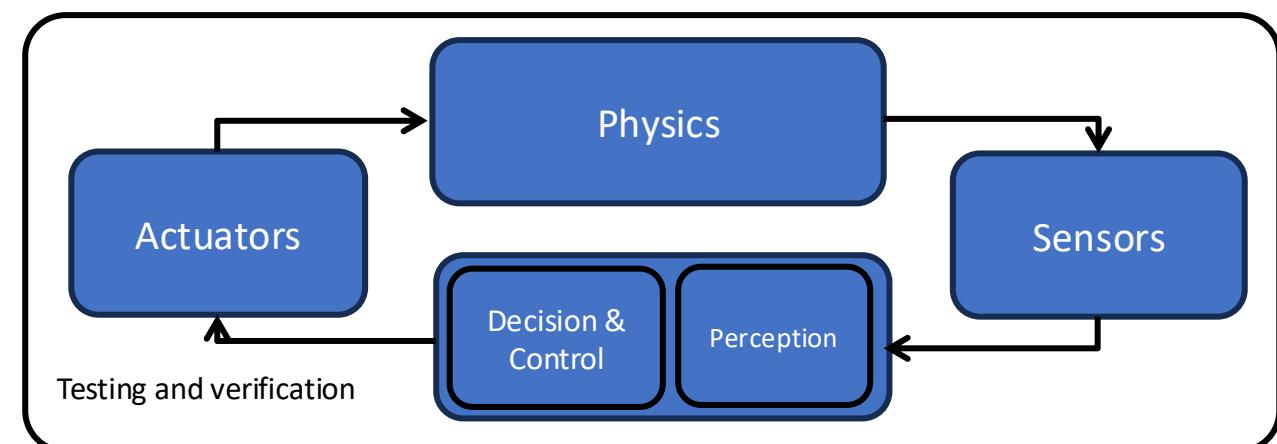
$$x_1 = x_1 + v_1$$



Automaton model of AEB

Automaton $A = \langle Q, Q_0, D \rangle$

- $Q: \mathbb{R}^3; q \in Q \ q \cdot x_1, q \cdot x_2 \in \mathbb{R}$
- $Q_0 = \{q \mid [q \cdot x_1 = x_{10}, q \cdot x_2 = x_{20}, q \cdot v_1 = v_{10}]\}$
- $(q, q') \in D$ iff
 - if $q \cdot x_2 - q \cdot x_1 \leq d_{sen}$
 - $q' \cdot v_1 \in [q \cdot v_1 - a_{1b}, q \cdot v_1 - a_{2b}]$
 - $q' \cdot x_2 = q \cdot x_2 + q \cdot v_2$
 - $q' \cdot x_1 = q \cdot x_1 + q \cdot v_1$



What is missing in the AEB model?

If $x_2 - x_1 \leq 2.0$

$v_1 \in [v_1 - a_{1b}, v_1 - a_{2b}]$

else $v_1 = v_1$

$x_2 = x_2 + v_2$

$x_1 = x_1 + v_1$

- ▶ Acceleration, friction in dynamics
- ▶ Uncertainty in sensing
- ▶ Uncertainty in lead vehicle behavior
- ▶ Timing of execution of control loop

“All models are wrong, but some are useful.”

Safety and liveness requirements

$$R_{gap} = \{\alpha \mid \forall i \alpha_i \cdot x_2 > \alpha_i \cdot x_1\}$$

non-zero gap $U_{gap} = \{q \mid q \cdot x_2 - q \cdot x_1 \leq 0\}$

$$R_{sp-lim} = \{\alpha \mid \forall i \alpha_i \cdot v_1 \leq 70\}$$

speed limit $U_{sp-lim} = \{q \mid q \cdot x_1 \geq 70\}$

$$R_{catch-up} = \{\alpha \mid \exists i 2 > \alpha_i \cdot x_2 - \alpha_i \cdot x_1 > 1\}$$

catch eventually

A **safety requirement** says that *every* state along *every* execution should stay in safe states

Equivalently, no execution of A ever reaches any unsafe states

R_{gap} and R_{sp-lim} are safety requirements with U_{gap} and U_{sp-lim} as the unsafe sets

$R_{catch-up}$ is not a safety requirement; it is an example of a **liveness / progress requirement**

A liveness requirement says that along *every* execution eventually some good state is reached

Outline

Motivation

Administrivia

Introduction to Safety

- Models
- Requirements
- Verification

Safety verification: Finite State Automata

Safety verification problem: Given an automaton A and an unsafe set U , check whether there exists any execution α of A that reaches U

Counter-examples of safety are finite executions ending in U

For finite automata, safety verification can be solved using depth first search from Q_0

- ▶ Consider $\langle Q, Q_0, D \rangle$ as a directed graph with $\langle Q, D \rangle$
- ▶ DFS computes all paths or executions from Q_0
- ▶ If none of these executions hit U there is no counter-example
- ▶ Absence of a counter-example **proves** that the automaton is safe

In practice, explicit enumeration of all paths may not scale to large graphs

Safety verification and Reachability: Infinite State Spaces

A state $q \in Q$ is **reachable** if there exists an execution α such that $\alpha_i = q$.

$Reach_A(Q_0) \subseteq Q$ the set of reachable states of A from Q_0

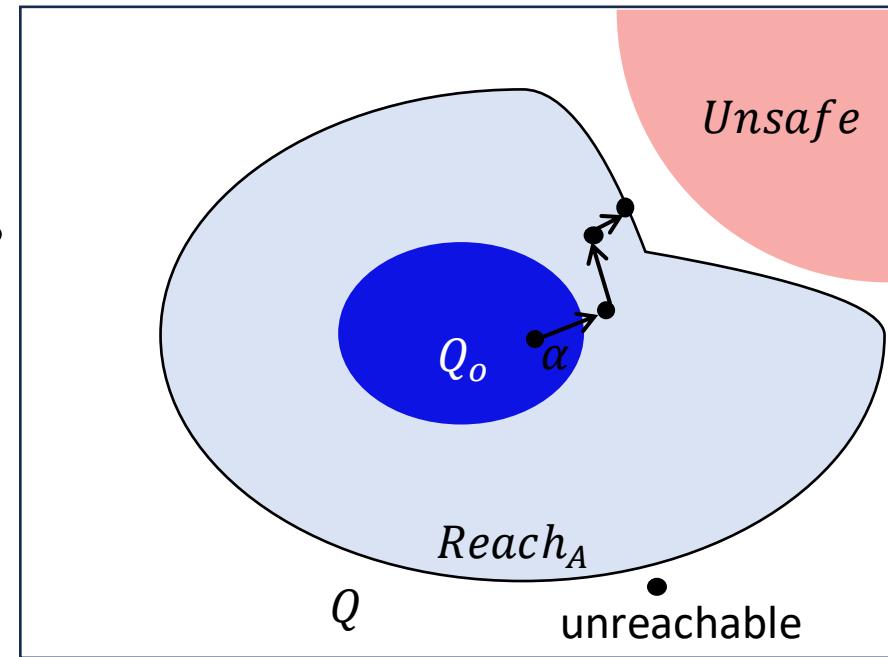
Safety verification problem is equivalent to as checking $Reach_A \cap U = \emptyset$?

That is, if we can compute $Reach_A$ then we can verify safety

Finite state systems DFS computes $Reach_A(Q_0)$

For infinite state systems, we need:

- ▶ Representation of infinite sets of states
- ▶ Iteratively computing $Reach_A$



Computing reachable sets and over-approximations

Define $\text{Post}(R) = \{q' \mid \exists q \in R, (q, q') \in D\}$ that gives all the states that can be reached in one step from the set of states R

- For a deterministic system $\text{Post}(\{q\}) = q'$ for $(q, q') \in D$
- For finite R , $\text{Post}(R) = \bigcup_{q \in R} \text{Post}(\{q\})$
- $\text{Post}(Q_0) = \{q \mid \exists q_0 \in Q_0, (q_0, q) \in D\}$ states reachable in 1 step from Q_0
- $\text{Post}(\text{Post}(Q_0)) = ?$

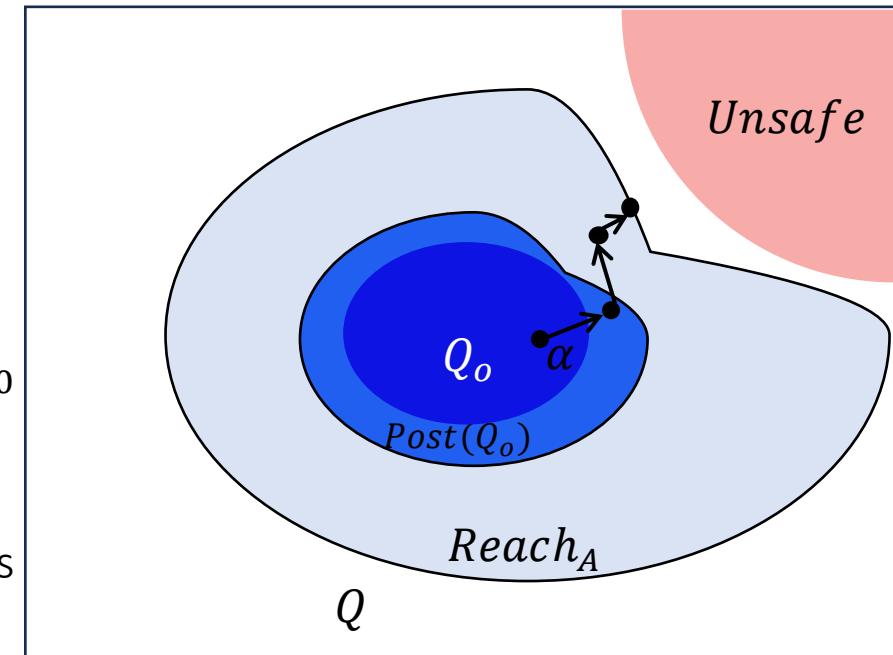
Infinite sets & nondeterministic $\text{Post}(R)$ requires some representation of sets

Example:

- $Q = [x_1: \mathbb{R}] D: x_1 = x_1 + v_1$ then $R = [a, b]$ $\text{Post}(R) = [a + v_1, b + v_1]$
- $Q = \mathbb{R}^4$ then $R = [\mathbf{a}, \mathbf{b}]$ then $\text{Post}(R)$ is a hyperrectangle

Generally, for nonconvex R nonlinear D exact $\text{Post}(R)$ may be infeasible

We use over-approximation $\overline{\text{Post}}(R)$ such that $\text{Post}(R) \subseteq \overline{\text{Post}}(R)$



Reachable sets and over-approximations

```
Reachability( $A = \langle Q, Q_0, D \rangle$ )
```

```
 $R_0 = Q_0$ 
```

```
 $R_1 = \emptyset$ 
```

```
 $i = 0$ 
```

```
do
```

```
   $R_{i+1} = \overline{Post}(R_i) \cup R_i$ 
```

```
   $i = i + 1$ 
```

```
Until  $R_i \neq R_{i-1}$ 
```

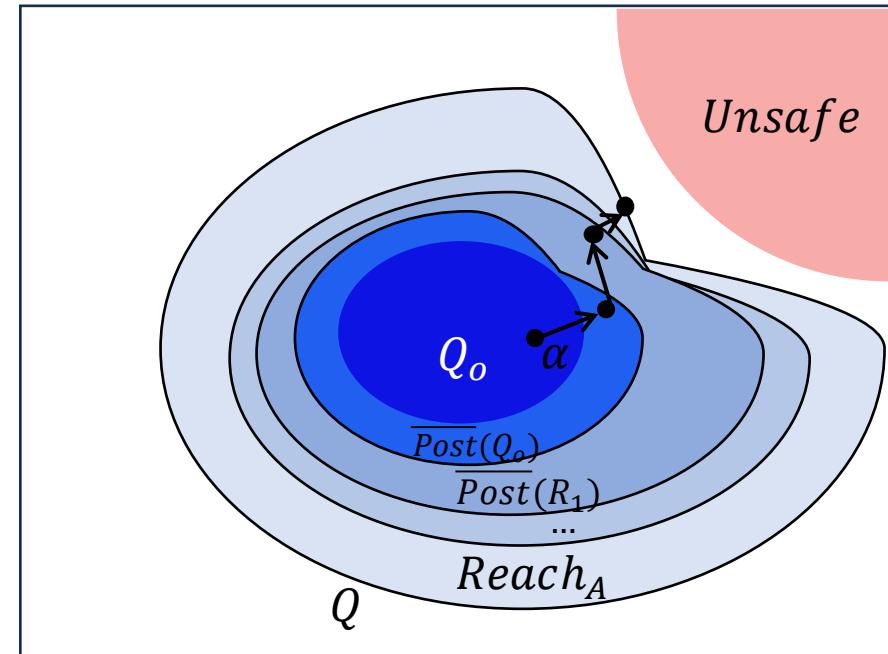
```
Return  $R_i$ 
```

Exercise. Show that $Post$ and \overline{Post} is monotonic, i.e., If $S_1 \subseteq S_2$ then $Post(S_1) \subseteq Post(S_2)$.

Exercise. Show that all states that are reachable in exactly k steps is $Post^k(Q_0)$.

Exercise. If this algorithm terminates and returns R then $Reach_A(Q_0) \subseteq R$, i.e., it computes an over-approximation of the reachable sets of A .

$R \cap \overline{Unsafe} = \emptyset$ proves safety, but $\overline{Reach_A}(Q_0) \cap \overline{Unsafe} \neq \emptyset$ does not imply that there is a real counterexample

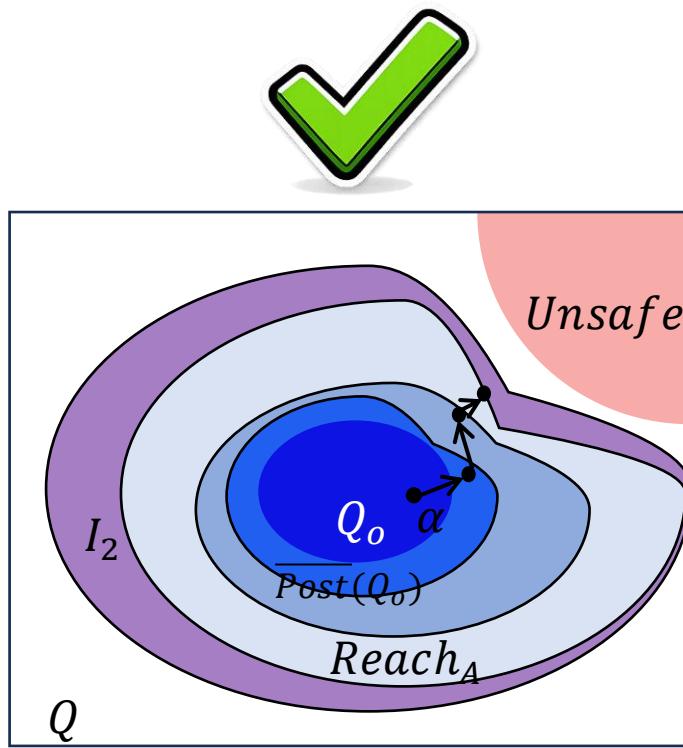


Invariants and safety verification

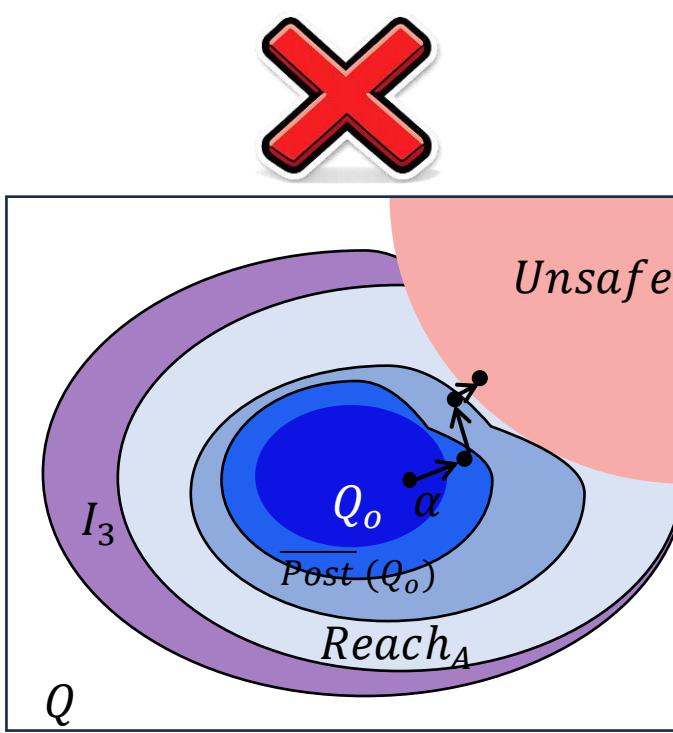
A set $I \subseteq Q$ is an **invariant** if $Reach_A(Q_0) \subseteq I$

Over-approximates the reachable states, not unique, and define everything that *can* happen

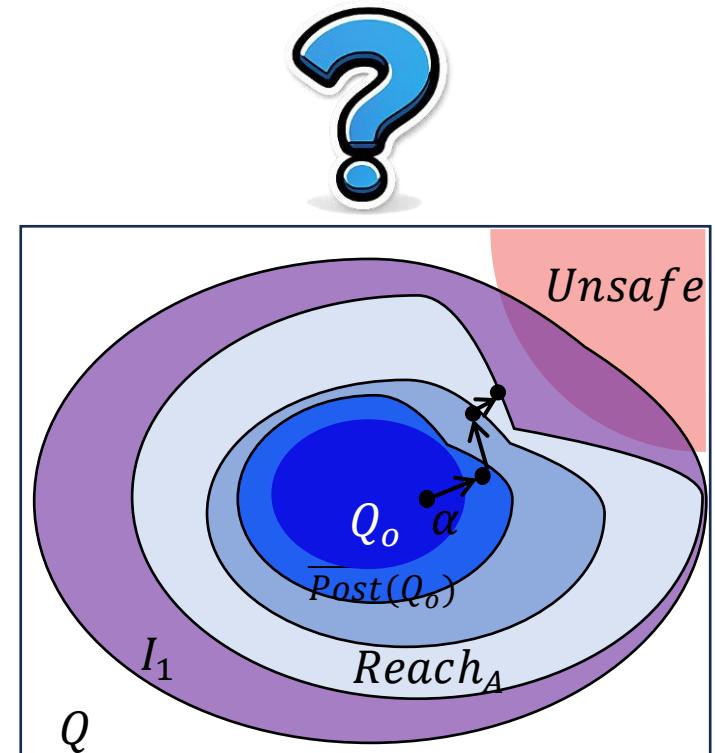
If the algorithm terminates, it returns *an* invariant which may or may not prove safety



System is safe but and verified by invariant I_2



$I_3 \cap Unsafe \neq \emptyset$ and system is unsafe



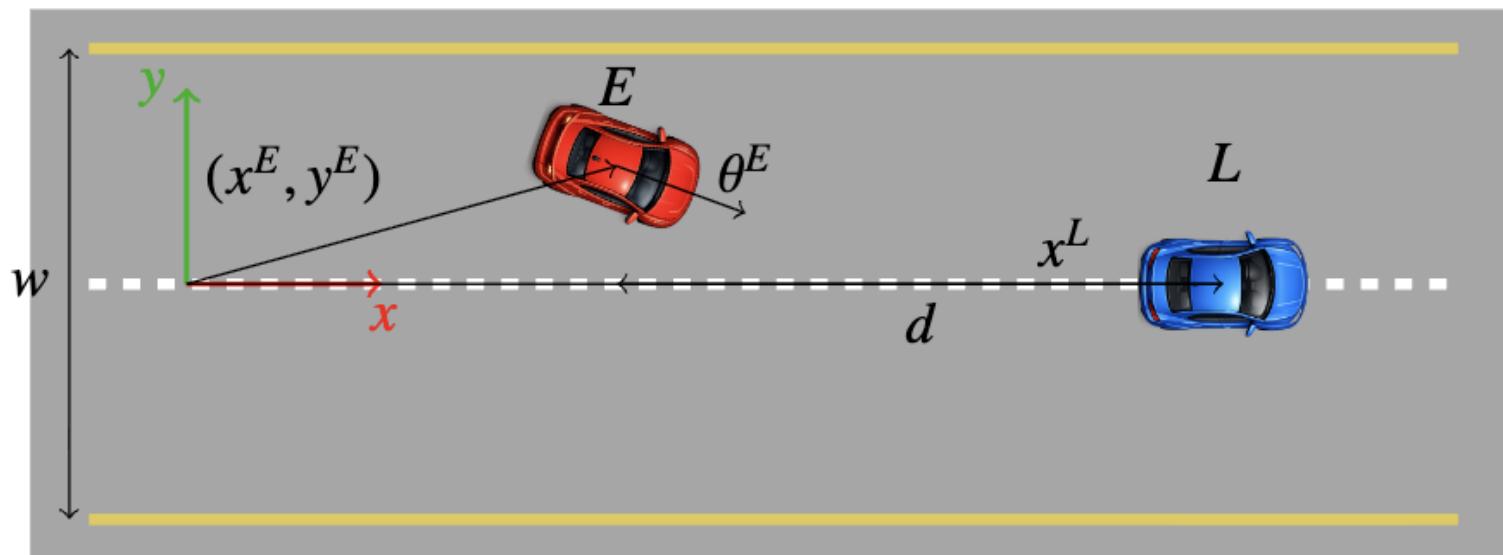
$I_1 \cap Unsafe \neq \emptyset$ but system is safe

Example: Lane-keeping

Example. Vehicle (E) with braking and lane-keeping controller

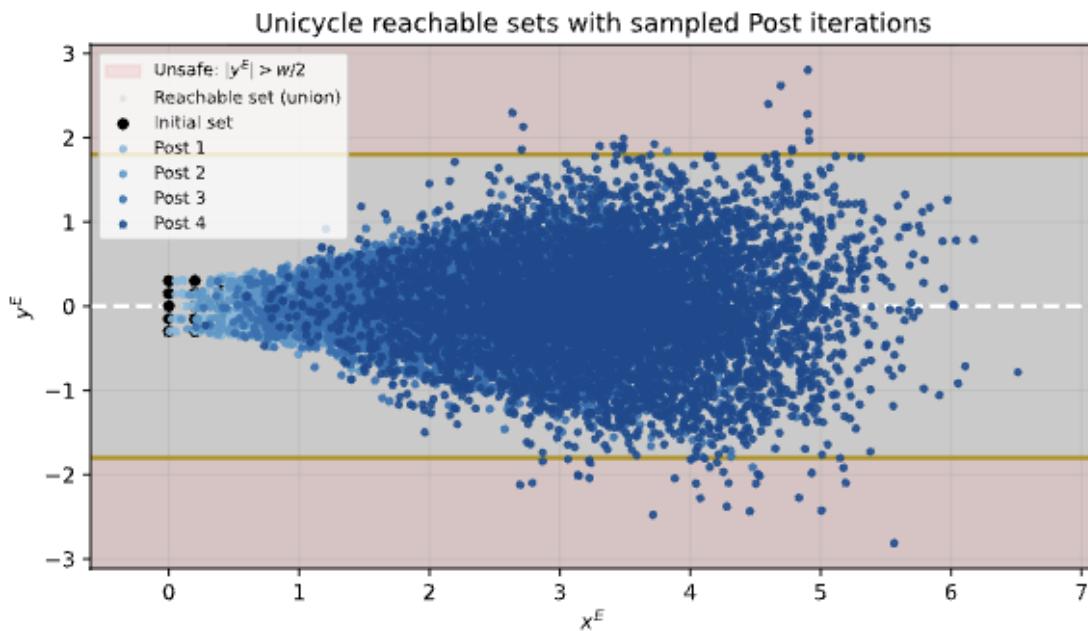
$Q: [x^E, y^E, \theta^E, x^L] \in \mathbb{R}^4$ and velocities are chosen in each step

See course reader for definition of D

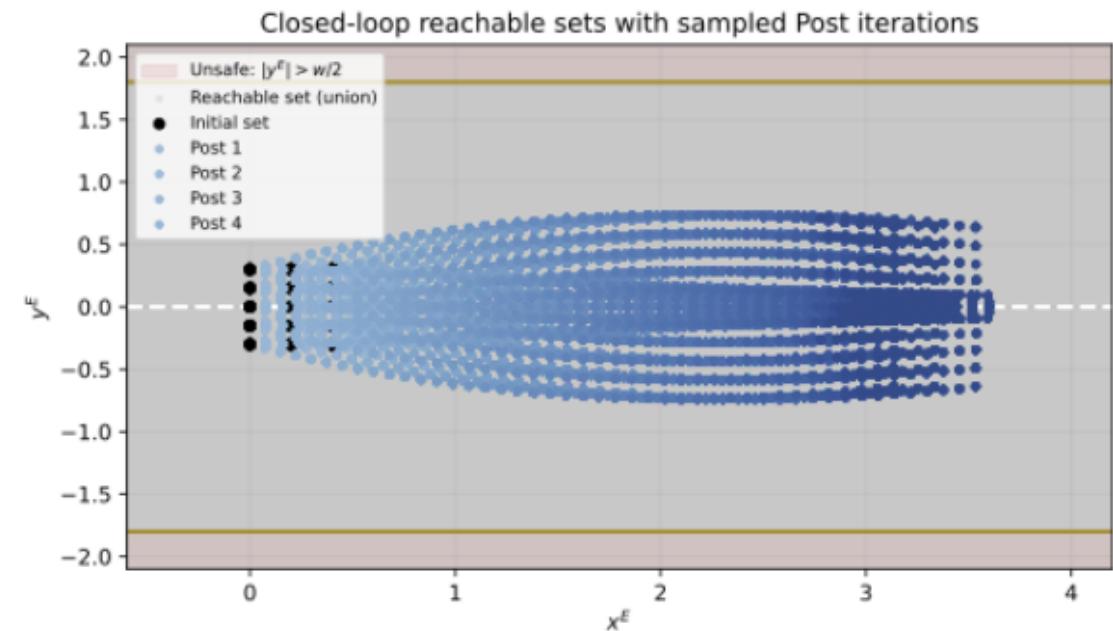


Reachable sets

Open-loop



Closed-loop

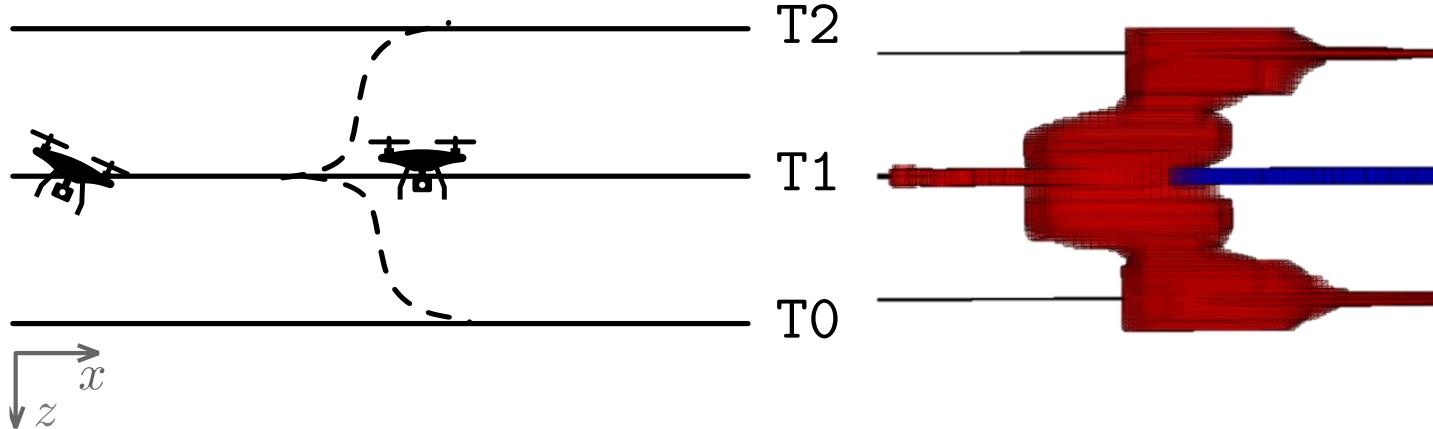


Summary

- ▶ Canvas quiz:
https://canvas.illinois.edu/courses/67113/assignments/1563205?display=full_width_with_nav
- ▶ Verification is the problem of proving/disproving requirements
- ▶ Safety requirements state Unsafe things never happen OR
 - ▶ All reachable states are disjoint from unsafe sets $\text{Reach}_A \cap \text{Unsafe} = \emptyset$
- ▶ For finite state systems explicit reachability possible via DFS
- ▶ In general, reachability and verification are hard (state space explosion, undecidability)
- ▶ We can over-approximate $\text{Reach}_A \subseteq \overline{\text{Post}}^k(Q_0)$

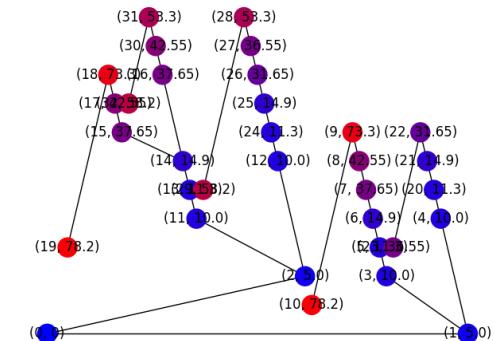
Verse: Python library for reachability analysis (MPO)

```
class Mode(Enum):  
    Normal = auto()  
    Up = auto()  
...  
class Track(Enum):  
    T0 = auto()  
    T1 = auto()  
...  
class State:  
    x: float  
    y: float  
...  
    mode: Mode  
    track: Track
```



```
def decisionLogic(ego: State, others: List[State], map):  
    if ego.mode == Mode.Normal:  
        if any(isClose(ego, other) for other in others):  
            if map.exist(ego.track, ego.mode, Mode.Up):  
                next.mode = Mode.Up  
                next.track = map.h(ego.track, ego.mode, Mode.Up)  
            if map.exist(ego.track, ego.mode, Mode.Down):  
                next.mode = Mode.Down  
    ...  
    assert not any(isVeryClose(ego, other) for other in others), "Separation"
```

```
q1 = QuadrotorAgent("q1", ...) // Defines the dynamics  
q1.set_initial([...], (Mode.Normal, Track.T1))  
scenario.add_agent(q1)  
q2 = ...  
scenario.set_map(M5())  
scenario.simulate(...)  
scenario.verify(...)
```

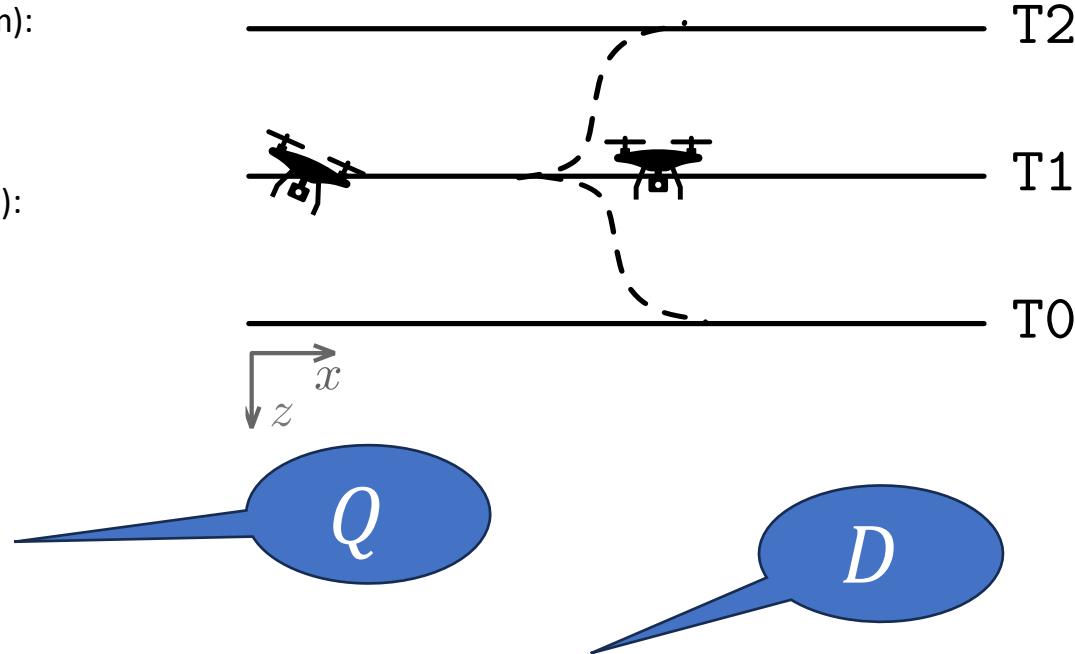
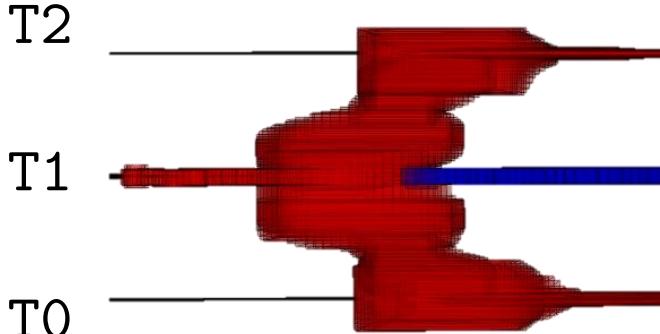
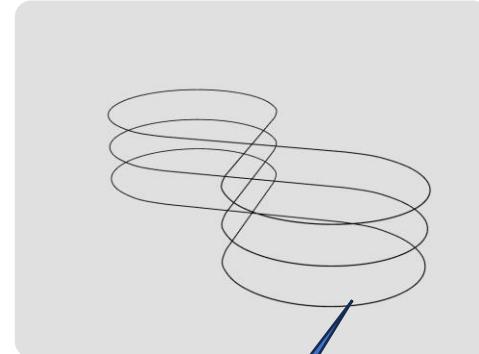


Verse: Python library for reachability analysis (MPO)

```
class Mode(Enum):  
    Normal = auto()  
    Up = auto()  
    ...  
class Track(Enum):  
    T0 = auto()  
    T1 = auto()  
    ...  
class State:  
    x: float  
    y: float  
    ...  
    mode: Mode  
    track: Track
```

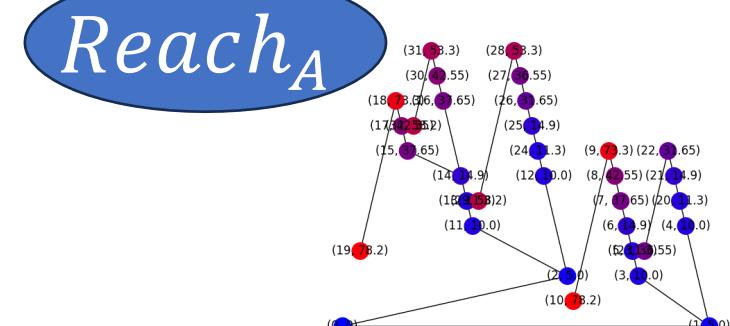
```
def decisionLogic(ego: State, others: List[State], map):  
    if ego.mode == Mode.Normal:  
        if any(isClose(ego, other) for other in others):  
            if map.exist(ego.track, ego.mode, Mode.Up):  
                next.mode = Mode.Up  
                next.track = map.h(ego.track, ego.mode, Mode.Up)  
            if map.exist(ego.track, ego.mode, Mode.Down):  
                next.mode = Mode.Down  
    ...
```

```
assert not any(isVeryClose(ego, other) for other in others), "Separation"
```



```
q1 = QuadrotorAgent("q1", ...)  
q1.set_initial(..., (Mode.Normal, Track.T1))  
scenario.add_agent(q1)  
q2 = ...  
scenario.set_map(M5())  
scenario.simulate(...)  
scenario.verify(...)
```

Reach_A



Unsafe

Inductive invariants

Proposition 1. If (i) $Q_0 \subseteq I$ and (ii) $Post(I) \subseteq I$ then I is an invariant, i.e., $\text{Reach}_A \subseteq I$.

Such invariants are called **inductive invariants**

Proof. Consider any reachable state $q \in \text{Reach}_A \subseteq Q$

By definition of reachable state, there is an execution α with $\alpha_k = q$

By induction on k we will show that $q \in I$

Base case, for $k=0$, $\alpha_0 = q_0 \in Q_0 \subseteq I$ [using definition of execution and (i)]

Induction. By inductive hypothesis, suppose $\alpha_k \in I$. We have to show $q = \alpha_{k+1} \in I$.

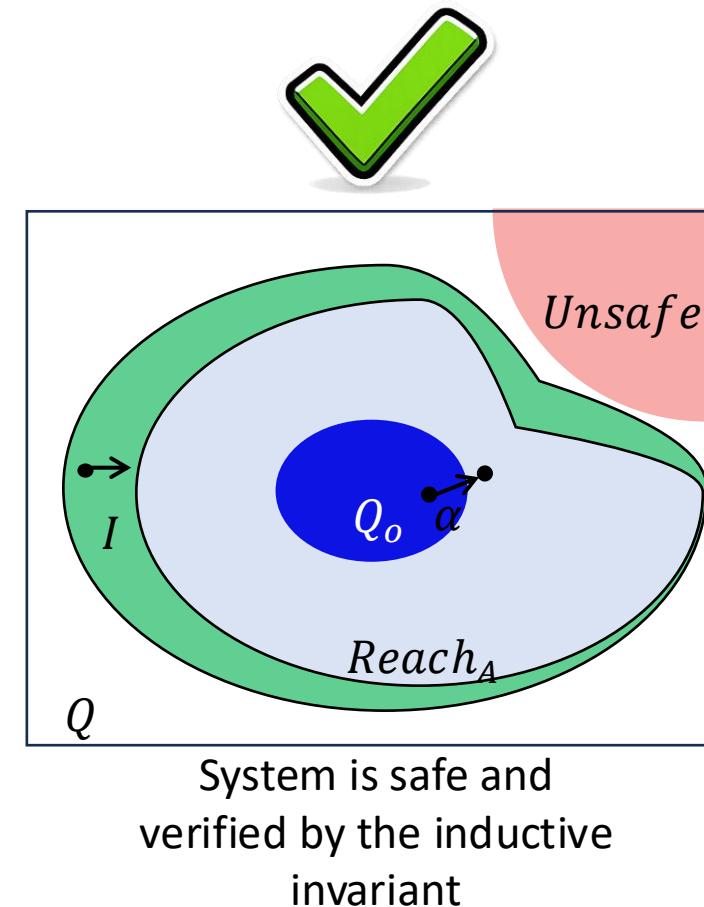
$q \in Post(\alpha_k)$ [Definition of Post, $(\alpha_k, q) \in D$]

$q \in Post(I)$ [Monotonicity of Post. $\alpha_k \in I \Rightarrow Post(\alpha_k) \subseteq Post(I)$]

$q \subseteq I$ [By (ii)]

Inductive invariants and Safety

- ▶ Guess a candidate inductive invariant I
- ▶ If $I \cap \text{Unsafe} = \emptyset$ and $Q_0 \subseteq I$ and $\text{Post}(I) \subseteq I$ then by the Proposition 1 $\text{Reach}_A \subseteq I$ and we have verified safety
- ▶ If the start and transition conditions fail, that does *not* imply that I is not an invariant
- ▶ It only implies that I cannot be checked inductively by Proposition 1.



Revisiting AEB

To prove no crash $x_2 > x_1$ in all reachable states, we will need assumptions about initial conditions ($x_{10}, x_{20}, v_{10}, v_{20}$), sensing distance (d_s), and braking acceleration (a_b)

Discovering these assumptions (for system correctness) is a valuable side-effect of verification

Assumption: $x_{20} - x_{10} > d_s > \frac{v_{10}^2}{ab}$

The proof of correctness (as expected) will relate total time of braking with the initial separation. We need a timer

Checking Inductive Invariant for AEB

```

timer = 0
If  $x_2 - x_1 \leq d_s$ 
  If  $v_1 \geq a_b$ 
     $v_1 = v_1 - a_b$ 
    timer := timer+1
  else
     $v_1 = 0$ 
  else
     $v_1 = v_1$ 
 $x_2 = x_2 + v_2$ 
 $x_1 = x_1 + v_1$ 

```

Invariant. I_1 : $\text{timer} + \frac{v_1}{a_b} \leq \frac{v_{10}}{a_b}$.

Bound on total braking time in terms of velocity and deceleration

Proof. We need to check two conditions for this to be an inductive invariant: (i) $Q_0 \in I_1$ and (ii) $\text{Post}(I_1) \subseteq I_1$.

(i) Consider any $q \in Q_0$. We need to show $q \in I_1$.

$$q.\text{timer} + \frac{q \cdot v_1}{a_b} = 0 + \frac{v_{10}}{a_b} \leq \frac{v_{10}}{a_b}.$$

(ii) Consider any $(q, q') \in D$ with $q \in I_1$. We need to show $q' \in I_1$.

As there are three branches in D , there are 3 cases.

$$(a) q'.\text{timer} + \frac{q' \cdot v_1}{a_b} = q.\text{timer} + 1 + \frac{q \cdot v_1 - a_b}{a_b} = q.\text{timer} + \frac{q \cdot v_1}{a_b} \leq \frac{v_{10}}{a_b}$$

$$(b) q'.\text{timer} + \frac{q' \cdot v_1}{a_b} = q.\text{timer} + 0 \leq \frac{v_{10}}{a_b}$$

$$(c) q'.\text{timer} + \frac{q' \cdot v_1}{a_b} = q.\text{timer} + \frac{q \cdot v_1}{a_b} \leq \frac{v_{10}}{a_b}$$

$$I_2: \text{timer} \leq \frac{v_{10}}{a_b}$$

Invariants and assumptions give correctness proof

Consider any two reachable states:

q_1 is where $x_2 - x_1 \leq d_s$ became true first, and

q_2 is reached from q_1 with $q_2 \cdot x_2 - q_2 \cdot x_1 \leq d_s$ (other reachable states are safe)

$$q_2 \cdot x_2 - q_2 \cdot x_1$$

$$> q_1 \cdot x_2 - q_2 \cdot x_1$$

[1, Because x_2 increased]

$$> q_1 \cdot x_2 - q_1 \cdot x_1 - v_{10} \cdot \frac{v_{10}}{a_b}$$

[$I_2 \Rightarrow \text{timer} \leq \frac{v_{10}}{a_b}$ and $q_2 \cdot x_1 \leq q_1 \cdot x_1 + v_{10} \cdot \frac{v_{10}}{a_b}$]

$$> d_s - \frac{v_{10}^2}{a_b}$$

[By def of q_1]

$$> 0$$

[By Assumption]

Summary

- ▶ Testing alone is inadequate---in theory and practice
- ▶ Automaton (state machine) models, executions, and requirements give us the language to state correctness claims precisely
- ▶ Verification is the problem of proving/disproving such claims
- ▶ Safety claims are a (prevalent) subset of correctness claims
- ▶ Reachability analysis can prove/disprove safety
- ▶ In general, reachability and verification are hard (state space explosion, undecidability)
- ▶ Inductive invariants over-approximating reachable states give a practical method for proving safety