
Principles of Safe Autonomy
ECE 484 SP’26
Lecture 2

Professor: Sayan Mitra

Jan 22, 2026

https://safeautonomy-
illinois.github.io/ece484-site/

https://mitras.ece.illinois.edu/
https://mitras.ece.illinois.edu/
https://mitras.ece.illinois.edu/
https://mitras.ece.illinois.edu/
https://mitras.ece.illinois.edu/

Outline
Motivation

Administrivia

Introduction to Safety

• Models

• Requirements

• Proofs

Automata or state machine models

An automaton 𝐴 is defined by a triple ⟨𝑄, 𝑄0, 𝐷⟩, where

► 𝑄 is a set of states

► 𝑄0 ⊆ 𝑄 is a set of initial states

► 𝐷 ⊆ 𝑄 × 𝑄 is a set of transitions

An execution of 𝐴 is a finite or infinite sequence 𝑞0, 𝑞1, … such that 𝑞0 ∈ 𝑄0 and 𝑞𝑖 , 𝑞𝑖+1 ∈ 𝐷

Example: Traffic light automaton

► 𝑄 = {𝐺, 𝑌, 𝑅} 𝑄0 = {𝐺}

► 𝐷 = 𝐺, 𝑌 , 𝑌, 𝑅 , (𝑅, 𝐺)

Execution of traffic light 𝐺, 𝑌, 𝑅, 𝐺, 𝑌, 𝑅 … infinite even though finite state

G Y R

Requirements and Counter-examples

Requirements define what the system must and must not do

Example: “Car stays within speed limit”

Autonomous car: “Ego should not collide with lead car”

Collatz: “Every number eventually ends in the 4-2-1 cycle”

A requirement defines a set R of allowed executions

An execution 𝛼 that is not in the set R is a counter-example

Reventually-1 = 𝛼 ∃𝑘 𝛼𝑘 = 1}

An automaton 𝐴 satisfies a requirement 𝑅 if all executions of 𝐴 satisfies 𝑅

Whether the Collatz automaton satisfies the requirement Reventually-1 for all initial conditions

remains an open problem, although no counter-example has been found up to 270

This is an example of a verification problem

Verification problem

Verification problem: Given an automaton 𝐴 and a requirement 𝑅, check whether
all executions of 𝐴 satisfy 𝑅 or find a counter-example

Testing or checking individual executions can help find counter-examples but
cannot show that there is no counter-example

Verification can be hard because

► |Q| is finite but large and testing may require visiting all the states (e.g.,
Collatz)

► |Q| is small but the number of executions is very large

► |Q| may be infinite and D may be nondeterministic --- typical for autonomous
system

Example: Automatic Emergency Braking (AEB)

Car must brake to maintain safe gap with lead

vehicle/pedestrian

There is no standard for checking correctness of AEB

systems

Future: Every code commit in github from an AEB

engineer, proves a theorem establishing A satisfies Rgap

Automaton model of AEB

Automaton 𝐴 = 𝑄, 𝑄0, 𝐷

►𝑄: [𝑥1, 𝑥2, 𝑣1] ∈ ℝ3

►𝑄0 = {[𝑥1 = 𝑥10, 𝑥2 = 𝑥20, 𝑣1 = 𝑣10]}

►𝐷 ⊆ 𝑄 × 𝑄 written as a program

If 𝑥2 − 𝑥1 ≤ 𝑑𝑠𝑒𝑛

 𝑣1 ∈ 𝑣1 − 𝑎1𝑏 , 𝑣1 − 𝑎2𝑏

𝑥2 = 𝑥2 + 𝑣2

𝑥1 = 𝑥1 + 𝑣1

𝑣1 𝑣2 = 𝑣20

If 𝑥2 − 𝑥1 ≤ 𝑑𝑠𝑒𝑛

𝑣1 ∈ 𝑣1 − 𝑎1𝑏 , 𝑣1 − 𝑎2𝑏

Automaton model of AEB

Automaton 𝐴 = 𝑄, 𝑄0, 𝐷

►𝑄: ℝ3; 𝒒 ∈ 𝑄 𝒒. 𝑥1, 𝒒. 𝑥2 ∈ ℝ

►𝑄0 = 𝒒 [𝒒. 𝑥1 = 𝑥10, 𝒒. 𝑥2 =
𝑥20, 𝒒. 𝑣1 = 𝑣10]}

► 𝒒, 𝒒′ ∈ 𝐷 iff
If 𝒒. 𝑥2 − 𝒒. 𝑥1 ≤ 𝑑𝑠𝑒𝑛

 𝒒′. 𝑣1 ∈ 𝒒. 𝑣1 − 𝑎1𝑏 , 𝒒. 𝑣1 − 𝑎2𝑏

𝒒′. 𝑥2 = 𝒒. 𝑥2 + 𝒒. 𝑣2

𝒒′. 𝑥1 = 𝒒. 𝑥1 + 𝒒. 𝑣1

If 𝑥2 − 𝑥1 ≤ 𝑑𝑠𝑒𝑛

𝑣1 ∈ 𝑣1 − 𝑎1𝑏 , 𝑣1 − 𝑎2𝑏

Testing and verification

Physics

SensorsActuators

Perception
Decision &

Control

What is missing in the AEB model?

If 𝑥2 − 𝑥1 ≤ 2.0

 𝑣1 ∈ 𝑣1 − 𝑎1𝑏 , 𝑣1 − 𝑎2𝑏

else 𝑣1 = 𝑣1
𝑥2 = 𝑥2 + 𝑣2
𝑥1 = 𝑥1 + 𝑣1

► Acceleration, friction in dynamics
► Uncertainty in sensing

► Uncertainty in lead vehicle behavior

► Timing of execution of control loop

“All models are wrong, but some are useful.”

Safety and liveness requirements
𝑅𝑔𝑎𝑝 = 𝛼 ∀𝑖 𝛼𝑖 . 𝑥2 > 𝛼𝑖 . 𝑥1} non-zero gap 𝑈𝑔𝑎𝑝 = 𝒒 𝒒. 𝑥2 − 𝒒. 𝑥1 ≤ 0}

𝑅𝑠𝑝−𝑙𝑖𝑚 = 𝛼 ∀𝑖 𝛼𝑖 . 𝑣1 ≤ 70} speed limit 𝑈𝑠𝑝−𝑙𝑖𝑚 = 𝒒 𝒒. 𝑥1 ≥ 70}

𝑅𝑐𝑎𝑡𝑐ℎ−𝑢𝑝 = 𝛼 ∃𝑖 2 > 𝛼𝑖 . 𝑥2 − 𝛼𝑖 . 𝑥1 > 1} catch eventually

A safety requirement says that every state along every execution should stay in safe states

Equivalently, no execution of A ever reaches any unsafe states

𝑅𝑔𝑎𝑝 and 𝑅𝑠𝑝−𝑙𝑖𝑚 are safety requirements with 𝑈𝑔𝑎𝑝 and 𝑈𝑠𝑝−𝑙𝑖𝑚 as the unsafe sets

𝑅𝑐𝑎𝑡𝑐ℎ−𝑢𝑝 is not a safety requirement; it is an example of a liveness / progress requirement

A liveness requirement says that along every execution eventually some good state is reached

Outline
Motivation

Administrivia

Introduction to Safety

• Models

• Requirements

• Verification

Safety verification: Finite State Automata

Safety verification problem: Given an automaton 𝐴 and an unsafe set 𝑈, check
whether there exists any execution 𝛼 of 𝐴 that reaches 𝑈

Counter-examples of safety are finite executions ending in 𝑈

For finite automata, safety verification can be solved using depth first search from
𝑄0

► Consider 𝑄, 𝑄0, 𝐷 as a directed graph with 𝑄, 𝐷

►DFS computes all paths or executions from 𝑄0

► If none of these executions hit 𝑈 there is no counter-example

►Absence of a counter-example proves that the automaton is safe

In practice, explicit enumeration of all paths may not scale to large graphs

Safety verification and Reachability: Infinite State Spaces

A state 𝑞 ∈ 𝑄 is reachable if there exists an execution 𝛼 such that 𝛼𝑖 = 𝑞.

𝑅𝑒𝑎𝑐ℎ𝐴 𝑄0 ⊆ 𝑄 the set of reachable states of A from 𝑄0

Safety verification problem is equivalent to as checking 𝑅𝑒𝑎𝑐ℎ𝐴 ∩ 𝑈 = ∅?

That is, if we can compute 𝑅𝑒𝑎𝑐ℎ𝐴 then we can verify safety

Finite state systems DFS computes 𝑅𝑒𝑎𝑐ℎ𝐴 𝑄0

For infinite state systems, we need:

► Representation of infinite sets of states

► Iteratively computing 𝑅𝑒𝑎𝑐ℎ𝐴

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝛼

𝑈𝑛𝑠𝑎𝑓𝑒

unreachable

𝑃𝑜𝑠𝑡(𝑄𝑜)

Computing reachable sets and over-approximations
Define 𝑃𝑜𝑠𝑡 𝑅 = 𝑞′ ∃ 𝑞 ∈ 𝑅, 𝑞, 𝑞′ ∈ 𝐷} that gives all the states that can

be reached in one step from the set of states 𝑅

► For a deterministic system 𝑃𝑜𝑠𝑡 {𝑞} = 𝑞′ for 𝑞, 𝑞′ ∈ 𝐷

► For finite 𝑅, 𝑃𝑜𝑠𝑡 𝑅 =∪𝑞∈𝑅 𝑃𝑜𝑠𝑡(𝑞)

► 𝑃𝑜𝑠𝑡 𝑄0 = 𝑞 ∃ 𝑞0 ∈ 𝑄0, 𝑞0, 𝑞 ∈ 𝐷} states reachable in 1 step from 𝑄0

► 𝑃𝑜𝑠𝑡 𝑃𝑜𝑠𝑡 𝑄0 =?

Infinite sets & nondeterministic 𝑃𝑜𝑠𝑡 𝑅 requires some representation of sets

Example:

► 𝑄 = [𝑥1: ℝ] 𝐷: 𝑥1 = 𝑥1 + 𝑣1 then 𝑅 = [𝑎, 𝑏] 𝑃𝑜𝑠𝑡(𝑅) = [𝑎 + 𝑣1, 𝑏 + 𝑣2]

► 𝑄 = ℝ4 then 𝑅 = [𝒂, 𝒃] then 𝑃𝑜𝑠𝑡(𝑅) is a hyperrectangle

Generally, for nonconvex 𝑅 nonlinear 𝐷 exact 𝑃𝑜𝑠𝑡 𝑅 may be infeasible

We use over-approximation 𝑃𝑜𝑠𝑡 𝑅 such that𝑃𝑜𝑠𝑡 𝑅 ⊆ 𝑃𝑜𝑠𝑡 𝑅

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝛼

𝑈𝑛𝑠𝑎𝑓𝑒

Reachable sets and over-approximations

Exercise. Show that Post and 𝑃𝑜𝑠𝑡 is monotonic, i.e., If 𝑺𝟏 ⊆ 𝑺𝟐 then
𝑃𝑜𝑠𝑡(𝑆1) ⊆ 𝑃𝑜𝑠𝑡(𝑆2).

Exercise. Show that all states that are reachable in exactly k steps is

𝑃𝑜𝑠𝑡𝑘(𝑄0).

Exercise. If this algorithm terminates and returns 𝑅 then 𝑅𝑒𝑎𝑐ℎ𝐴(𝑄0) ⊆ 𝑅,
i.e., it computes an over-approximation of the reachable sets of A.

𝑅 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅ proves safety, but 𝑅𝑒𝑎𝑐ℎ𝐴 𝑄0 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 ≠ ∅ does not
imply that there is a real counterexample

𝑃𝑜𝑠𝑡(𝑅1)

𝑃𝑜𝑠𝑡(𝑄𝑜)

𝛼

𝑈𝑛𝑠𝑎𝑓𝑒

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

…

Reachability(𝐴 = 𝑄, 𝑄0, 𝐷)

𝑅0 = 𝑄0

𝑅1 = ∅

𝑖 = 0

do

 𝑅𝑖+1 = 𝑃𝑜𝑠𝑡 (𝑅𝑖) ∪ 𝑅𝑖

 𝑖 = 𝑖 + 1

Until 𝑅𝑖 ≠ 𝑅𝑖−1

Return 𝑅𝑖

Invariants and safety verification

A set 𝐼 ⊆ 𝑄 is an invariant if 𝑅𝑒𝑎𝑐ℎ𝐴(𝑄0) ⊆ 𝐼

Over-approximates the reachable states, not unique, and define everything that can happen

If the algorithm terminates, it returns an invariant which may or may not prove safety

𝑈𝑛𝑠𝑎𝑓𝑒

𝑃𝑜𝑠𝑡(𝑄𝑜)

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴
𝐼1

𝐼1 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 ≠ ∅
but system is safe

𝑈𝑛𝑠𝑎𝑓𝑒

𝑃𝑜𝑠𝑡(𝑄𝑜)

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝐼2

System is safe but and
verified by invariant 𝐼2

𝑈𝑛𝑠𝑎𝑓𝑒

𝑃𝑜𝑠𝑡 (𝑄𝑜)

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝐼3

𝐼3 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 ≠ ∅ and
system is unsafe

Example: Lane-keeping

Example. Vehicle (E) with braking and lane-keeping controller

𝑄: [𝑥𝐸 , 𝑦𝐸 , 𝜃𝐸 , 𝑥𝐿] ∈ ℝ4 and velocities are chosen in each step

See course reader for definition of 𝐷

Reachable sets

Open-loop Closed-loop

Summary

https://canvas.illinois.edu/courses/67113/assignments/1563205?displ

ay=full_width_with_nav

►Canvas quiz:
https://canvas.illinois.edu/courses/67113/assignments/1563205?displ
ay=full_width_with_nav

►Verification is the problem of proving/disproving requirements

►Safety requirements state Unsafe things never happen OR
► All reachable states are disjoint from unsafe sets Reach𝐴 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅

►For finite state systems explicit reachability possible via DFS

► In general, reachability and verification are hard (state space explosion,
undecidability)

►We can over-approximate Reach𝐴 ⊆ 𝑃𝑜𝑠𝑡
𝑘

(𝑄0)

https://canvas.illinois.edu/courses/67113/assignments/1563205?display=full_width_with_nav
https://canvas.illinois.edu/courses/67113/assignments/1563205?display=full_width_with_nav

class Mode(Enum):

 Normal = auto()
 Up = auto()
 …

class Track(Enum):
 T0 = auto()
 T1 = auto()

 …
class State:
 x: float

 y: float
 …
 mode: Mode

 track: Track

def decisionLogic(ego: State, others: List[State], map):

 if ego.mode == Normal:
 if any(isClose(ego, other) for other in others):
 if map.exist(ego.track, ego.mode, Up):

 next.mode = Up
 next.track = map.h(ego.track, ego.mode, Up)
 if map.exist(ego.track, ego.mode, Down):

 next.mode = Down
 …

assert not any(isVeryClose(ego, other) for other in others), "Seperation"

Verse: Python library for reachability analysis (MP0)

q1 = QuadrotorAgent(”q1", …) // Defines the dynamics

q1.set_initial([…], (Mode.Normal, Track.T1))
scenario.add_agent(q1)
q2 = …

scenario.set_map(M5())
scenario.simulate(…)
scenario.verify(…)

class Mode(Enum):

 Normal = auto()
 Up = auto()
 …

class Track(Enum):
 T0 = auto()
 T1 = auto()

 …
class State:
 x: float

 y: float
 …
 mode: Mode

 track: Track

def decisionLogic(ego: State, others: List[State], map):

 if ego.mode == Normal:
 if any(isClose(ego, other) for other in others):
 if map.exist(ego.track, ego.mode, Up):

 next.mode = Up
 next.track = map.h(ego.track, ego.mode, Up)
 if map.exist(ego.track, ego.mode, Down):

 next.mode = Down
 …

assert not any(isVeryClose(ego, other) for other in others), "Seperation"

Verse: Python library for reachability analysis (MP0)

q1 = QuadrotorAgent(”q1", …)

q1.set_initial([…], (Mode.Normal, Track.T1))
scenario.add_agent(q1)
q2 = …

scenario.set_map(M5())
scenario.simulate(…)
scenario.verify(…)

𝑄 𝐷

𝑈𝑛𝑠𝑎𝑓𝑒

𝑅𝑒𝑎𝑐ℎ𝐴

Inductive invariants

Proposition 1. If (i) Q0 ⊆ 𝐼 and (ii) 𝑃𝑜𝑠𝑡 𝐼 ⊆ 𝐼 then 𝐼 is an invariant, i.e., ReachA ⊆ 𝐼.

Such invariants are called inductive invariants

Proof. Consider any reachable state 𝒒 ∈ 𝑅𝑒𝑎𝑐ℎ𝐴 ⊆ 𝑄

By definition of reachable state, there is an execution 𝛼 with 𝛼𝑘 = 𝒒

By induction on k we will show that 𝒒 ∈ 𝐼

Base case, for k=0, 𝛼0 = 𝑞0 ∈ 𝑄0 ⊆ 𝐼 [using definition of execution and (i)]

Induction. By inductive hypothesis, suppose 𝛼𝑘 ∈ 𝐼. We have to show 𝒒 = 𝛼𝑘+1 ∈ 𝐼.

𝒒 ∈ 𝑃𝑜𝑠𝑡(𝛼𝑘) [Definition of Post, (𝛼𝑘 , 𝒒) ∈ 𝐷]

𝒒 ∈ 𝑃𝑜𝑠𝑡 𝐼 [Monotonicity of Post. 𝛼𝑘 ∈ 𝐼 ⇒ 𝑃𝑜𝑠𝑡 𝛼𝑘 ⊆ 𝑃𝑜𝑠𝑡 𝐼]

𝒒 ⊆ 𝐼 [By (ii)]

Inductive invariants and Safety

►Guess a candidate inductive invariant 𝐼

► If I ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅ and Q0 ⊆ 𝐼 and 𝑃𝑜𝑠𝑡 𝐼 ⊆ 𝐼
then by the Proposition 1 Reach𝐴 ⊆ 𝐼 and we have
verified safety

► If the start and transition conditions fail, that does
not imply that 𝐼 is not an invariant

► It only implies that 𝐼 cannot be checked inductively
by Proposition 1.

𝑈𝑛𝑠𝑎𝑓𝑒

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝐼

System is safe and
verified by the inductive

invariant

Revisiting AEB

To prove no crash 𝑥2 > 𝑥1 in all reachable states, we will need
assumptions about initial conditions (𝑥10, 𝑥20, 𝑣10, 𝑣20), sensing
distance 𝑑𝑠 , and braking acceleration (𝑎𝑏)

Discovering these assumptions (for system correctness) is a valuable
side-effect of verification

Assumption: 𝑥20 − 𝑥10 > 𝑑𝑠 >
𝑣10

2

𝑎𝑏

The proof of correctness (as expected) will relate total time of braking
with the initial separation. We need a timer

Checking Inductive Invariant for AEB

timer = 0
If 𝑥2 − 𝑥1 ≤ 𝑑𝑠

If 𝑣1 ≥ 𝑎𝑏

𝑣1 = 𝑣1 − 𝑎𝑏

timer := timer+1
 else
 𝑣1 = 0
else
 𝑣1 = 𝑣1

𝑥2 = 𝑥2 + 𝑣2

𝑥1 = 𝑥1 + 𝑣1

Invariant. 𝐼1: timer +
𝑣1

𝑎𝑏
≤

𝑣10

𝑎𝑏
.

Proof. We need to check two conditions for this to be an inductive
invariant: (i) 𝑄0 ∈ 𝐼1 and (ii) 𝑃𝑜𝑠𝑡 𝐼1 ⊆ 𝐼1.

(i) Consider any 𝑞 ∈ 𝑄0. We need to show 𝑞 ∈ 𝐼1.

𝑞. 𝑡𝑖𝑚𝑒𝑟 +
𝑞.𝑣1

𝑎𝑏
= 0 +

𝑣10

𝑎𝑏
≤

𝑣10

𝑎𝑏
.

(ii) Consider any 𝑞, 𝑞′ ∈ 𝐷 with 𝑞 ∈ 𝐼1. We need to show 𝑞′ ∈ 𝐼1.

As there are three branches in 𝐷, there are 3 cases.

(a) 𝑞′. 𝑡𝑖𝑚𝑒𝑟 +
𝑞′.𝑣1

𝑎𝑏
= 𝑞. 𝑡𝑖𝑚𝑒𝑟 + 1 +

𝑞.𝑣1−𝑎𝑏

𝑎𝑏
= 𝑞. 𝑡𝑖𝑚𝑒𝑟 +

𝑞.𝑣1

𝑎𝑏
≤

𝑣10

𝑎𝑏

(b) 𝑞′. 𝑡𝑖𝑚𝑒𝑟 +
𝑞′.𝑣1

𝑎𝑏
= 𝑞. 𝑡𝑖𝑚𝑒𝑟 + 0 ≤

𝑣10

𝑎𝑏

(c) 𝑞′. 𝑡𝑖𝑚𝑒𝑟 +
𝑞′.𝑣1

𝑎𝑏
= 𝑞. 𝑡𝑖𝑚𝑒𝑟 +

𝑞.𝑣1

𝑎𝑏
≤

𝑣10

𝑎𝑏

𝐼2: timer ≤
𝑣10

𝑎𝑏

Bound on total braking time in terms of
velocity and deceleration

Invariants and assumptions give correctness proof

Consider any two reachable states:

𝑞1 is where 𝑥2 − 𝑥1 ≤ 𝑑𝑠 became true first, and

𝑞2 is reached from 𝑞1 with q2. 𝑥2 − 𝑞2. 𝑥1 ≤ 𝑑𝑠 (other reachable states are safe)
𝑞2. 𝑥2 − 𝑞2. 𝑥1

 > 𝑞1. 𝑥2 − 𝑞2. 𝑥1 [1, Because 𝑥2 increased]

 > 𝑞1. 𝑥2 −𝑞1. 𝑥1 − 𝑣10.
𝑣10

𝑎𝑏
 [I2 ⇒ timer ≤

𝑣10

𝑎𝑏
 and 𝑞2. 𝑥1 ≤ 𝑞1. 𝑥1 + 𝑣10.

𝑣10

𝑎𝑏
]

 > 𝑑𝑠 −
𝑣10

2

𝑎𝑏
 [By def of 𝑞1]

 > 0 [By Assumption]

Summary

►Testing alone is inadequate---in theory and practice

►Automaton (state machine) models, executions, and requirements give
us the language to state correctness claims precisely

►Verification is the problem of proving/disproving such claims

►Safety claims are a (prevalent) subset of correctness claims

►Reachability analysis can prove/disprove safety

► In general, reachability and verification are hard (state space explosion,
undecidability)

► Inductive invariants over-approximating reachable states give a
practical method for proving safety

	Slide 1: Principles of Safe Autonomy ECE 484 SP’26 Lecture 2
	Slide 2: Outline
	Slide 3: Automata or state machine models
	Slide 4: Requirements and Counter-examples
	Slide 5: Verification problem
	Slide 6: Example: Automatic Emergency Braking (AEB)
	Slide 7: Automaton model of AEB
	Slide 8: Automaton model of AEB
	Slide 9: What is missing in the AEB model?
	Slide 10: Safety and liveness requirements
	Slide 11: Outline
	Slide 12: Safety verification: Finite State Automata
	Slide 13: Safety verification and Reachability: Infinite State Spaces
	Slide 14: Computing reachable sets and over-approximations
	Slide 15: Reachable sets and over-approximations
	Slide 16: Invariants and safety verification
	Slide 17: Example: Lane-keeping
	Slide 18: Reachable sets
	Slide 19: Summary
	Slide 20: Verse: Python library for reachability analysis (MP0)
	Slide 21: Verse: Python library for reachability analysis (MP0)
	Slide 22: Inductive invariants
	Slide 23: Inductive invariants and Safety
	Slide 24: Revisiting AEB
	Slide 25: Checking Inductive Invariant for AEB
	Slide 26: Invariants and assumptions give correctness proof
	Slide 27: Summary

