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Safety Verification via Reachability

Reachability(A = (Q, Qy, D))

Ro = Qo

R, =0

i=0

do
R;+1 = Post (R;) U R;
i=i+1

Until R; # R;_4

Return R;

If this algorithm terminates and returns R then Reach,(Q,) € R,
i.e., it computes an over-approximation of the reachable sets of A.

R n Unsafe = @ proves safety, but Reach,(Q,) N Unsafe + @
does not imply that there is a real counterexample



Invariants and safety verification

Aset ] € Qisaninvariant if Reachy(Qq) € 1
Over-approximates the reachable states, not unique, and define everything that can happen

If the algorithm terminates, it returns an invariant which may or may not prove safety

Reach

Q

System is safe but and I N Unsafe # @ and I, nUnsafe #Q
verified by invariant I, system is unsafe but svstem is safe



Verse performs reachability analysis (MPO)

class Mode(Enum): . T2
Normal = auto() I/

Up = auto() |
class Track(Enum): is’ I \\ T1
TO = auto() \

T1 =auto() N

= TO

class State: | X

x: float z

y: float

gl = QuadrotorAgent(“ql", ...) // Defines the dynamics
gl.set_initial([...], (Mode.Normal, Track.T1))
scenario.add_agent(ql)

g2 = ...

scenario.set_map(M5())
scenario.simulate(...)

scenario.verify(...)

mode: Mode
track: Track

def decisionLogic(ego: State, others: List[State], map):
if ego.mode == Normal:
if any(isClose(ego, other) for other in others):

if map.exist(ego.track, ego.mode, Up):
next.mode = Up
next.track = map.h(ego.track, ego.mode, Up)

if map.exist(ego.track, ego.mode, Down):
next.mode = Down

assert not any(isVeryClose(ego, other) for other in others), "Seperation”



Verse: Python library for reachability analysis (MPO)

class Mode(Enum): - T2
Normal = auto()
Up = auto() /

class Track(Enum): %’ S T1

TO = auto()
T1 = auto()

class State:
x: float
y: float

gl = QuadrotorAgent(“ql", ...)
gl.set_initial([...], (Mode.Normal, Track.T1))
scenario.add_agent(ql)
g2 = ...
scenario.set_map(M5())
scenario.simulate(...)
scenario.verify(...)

mode: Mode
track: Track

def decisionLogic(ego: State, others: List[State], map):
if ego.mode == Normal:
if any(isClose(ego, other) for other in others):

if map.exist(ego.track, ego.mode, Up):
next.mode = Up
next.track = map.h(ego.track, ego.mode, Up)

if map.exist(ego.track, ego.mode, Down):
next.mode = Down

assert not any(isVeryClose(ego, other) for other in others), "Seperation”



Reachability Analysis

Benefits

Fully automatic

Limitations

Termination

Scalability

Conservativeness

Alternative approach: Guess and check an invariant
that is adequate for safety




Inductive invariants

Proposition 1. If (i) Q, € I and (i) Post(I) € I then I is an invariant, i.e., Reach, S I.
Such invariants are called

Proof. Consider any reachable state q € Reach, € @

By definition of reachable state, there is an execution a with a;, = q

By induction on k we will show that q € I

Base case, for k=0, ay = qo € Qg S I [using definition of execution and (i)]
Induction. By inductive hypothesis, suppose a; € I. We have to show q = a1 € I.
q € Post(a;) [Definition of Post, (ay,q) € D]

q € Post(1) [ Monotonicity of Post. a; € I = Post(a;) S Post(l)]

qcl [By (ii)]



Inductive invariants and Safety

Guess a candidate inductive invariant I

fINnUnsafe =@ and Q, €I and Post(l) S|
then by the Proposition 1 Reach, € I and we have
verified safety

If the start and transition conditions fail, that does
not imply that I is not an invariant

It only implies that I cannot be checked inductively
by Proposition 1.

System is safe and
verified by the inductive
invariant



Automatic Emergency Braking (AEB)

Car must brake to maintain safe gap with lead
vehicle/pedestrian

Safety requirement x, > x4

Q: [Xl, X9, vl] = IRB

Unsafe S R3 :={qlq.x, < q.x,}

System is safe and verified by
the inductive invariant



Automaton model of AEB

Automaton A = (Q, Qy, D)
>Q: [x11x21v1] € ]RS

Vehicle Motion with Nondeterministic Braking

= Qo = {lx1 = X10,X2 = X0, V1 = V10]}  »f — vencernn
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Automaton model of AEB
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Automaton A = (Q, Qy, D)
Q:R3: g€ Qq.x1,q.x, ER
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AEB

To prove no crash x, > x4 in all reachable states, we will need
assumptions about initial conditions (x4, X209, V10), Sensing distance
(d.), and braking acceleration (a;)

Discovering assumptions for system correctness is a valuable side-effect

of verification

2
Vio

Assumption: X, — X109 > dg > .
b
The invariance proof will relate total time of braking with the initial

separation. We need a timer



Checking Inductive Invariant for AEB

Bound on total braking time in terms of

. . v 1%
Invariant. I;: timer + —+ < -

_ ap ap velocity and deceleration
lt]lr;er__f <4 Proof. We need to check two conditions for this to be an inductive
2 1 —=Ms . . . .
fv, > a, invariant: (i) Qo € I; and (ii) Post(l,) € I,.
Vi =V~ Gp (i) Considerany q € Qy. We need to show q € I;.
timer :=timer+1 ) q.vq V10 V1o
else q.tlmer+a—b=0+a—bsa—b.
=0 . : :
e|sev1 (ii) Consider any (g, q') € D with g € I,. We need to show q' € I;.
V) =g As there are three branches in D, there are 3 cases.
Xy =X T 13 ;o q' vy : qvi—ap . qvi _ V1o
i —_— = <
%5 = %, + vy (a) q'.timer + ” q.timer + 1 + ” q.timer + .
!/
(b) q'.timer + qa'vl = q.timer + 0 < %
b b
!/
(c) q'.timer + qa'zl = q.timer + % < 1;—1;

. 1%
I,: timer < =
ap



Invariants and assumptions give correctness proof

Consider any two reachable states:
g1 is where x, — x; < dg became true first, and

g, is reached from g; with q,.x, — g,.x; < d; (other reachable states are safe)
d2-X2 — (2. X1

> (g1.Xy — (5. Xq |1, Because x, increased]

> 1.X; —qq1. X1 — vlo.%’ [I, = timer < 7;1; and qz. X1 < q1.%1 + V1o 210
2

>ds—% [By def of g4 |
b

>0 [By Assumption]



Summary

Testing alone is inadequate---in theory and practice

Automaton (state machine) models, ,and give
us the language to state correctness claims precisely

is the problem of proving/disproving such claims
is a special class of requirements
can prove safety automatically*

over-approximating reachable states give another
method for proving safety



Outline

e Safety Verification

* Coordinate transforms




Coordinate frames

Different coordinate frames are used for
describing different aspects of an
autonomous system, E.g.,

position from GPS in world coordinates (W)
position of a marker as seen by camera:

camera frame (C) [ S
P

torque: body frame (B) W
What is a coordinate frame?
How are different coordinates related?

marker




Coordinate frame

~W @W

é;

A coordinate frame (W) is defined by its origin Oy, and 3 axes &Y, éj‘ﬁ", ey .
W
‘ é P

Let p = [xW,yW, zW] and p® = [x5, ¥, zB] be the coordinatesof ¢ "
point p in the W frame and B frame

We would like to convert p" to p® and vice versa

If the coordinate frames were just translations of each other:

Let the origin of B in the frame of W be pg; ; this is the displacement
of Og from Oy, in the W frame

Then, p" =pg, +p°  p” =p" - po,

What if the frames are rotated? Next time.
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