

ECE 484 Lecture 3 Safety Verification

Sayan Mitra

Outline

Safety Verification
Inductive invariants
Coordinates

Safety Verification via Reachability

```
Reachability( $A = \langle Q, Q_0, D \rangle$ )
```

```
 $R_0 = Q_0$ 
```

```
 $R_1 = \emptyset$ 
```

```
 $i = 0$ 
```

```
do
```

```
   $R_{i+1} = \overline{Post}(R_i) \cup R_i$ 
```

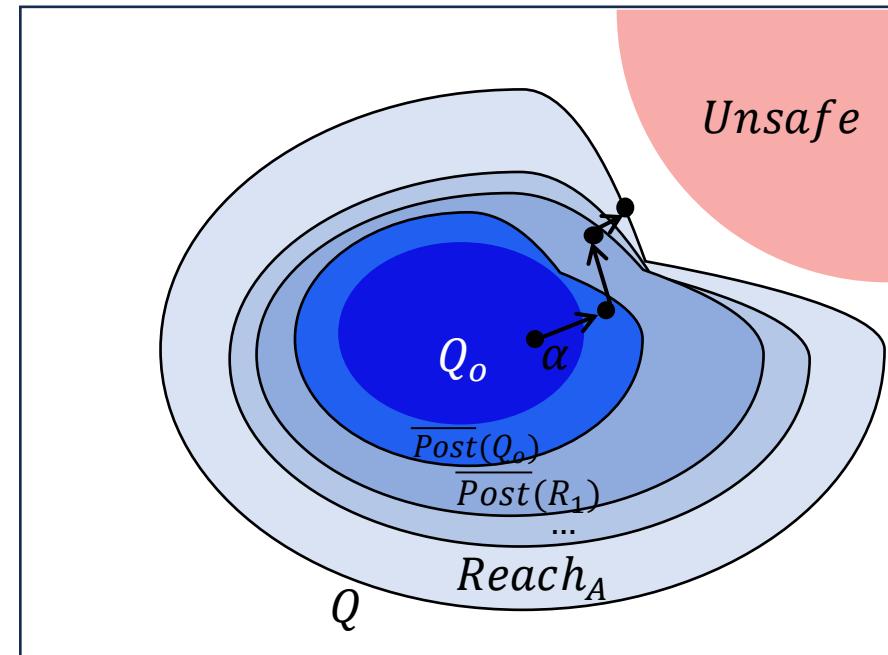
```
   $i = i + 1$ 
```

```
Until  $R_i \neq R_{i-1}$ 
```

```
Return  $R_i$ 
```

If this algorithm terminates and returns R then $Reach_A(Q_0) \subseteq R$, i.e., it computes an over-approximation of the reachable sets of A .

$R \cap Unsafe = \emptyset$ proves safety, but $\overline{Reach}_A(Q_0) \cap Unsafe \neq \emptyset$ does not imply that there is a real counterexample

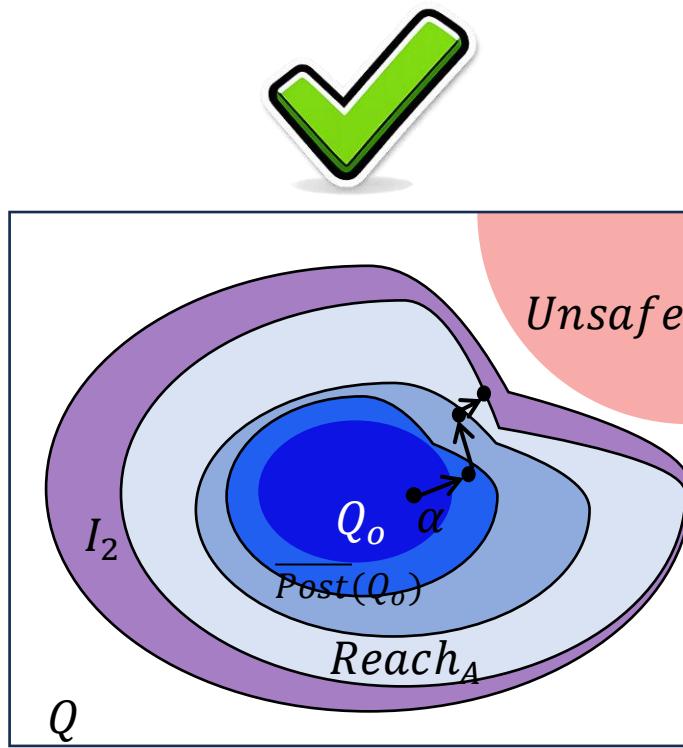


Invariants and safety verification

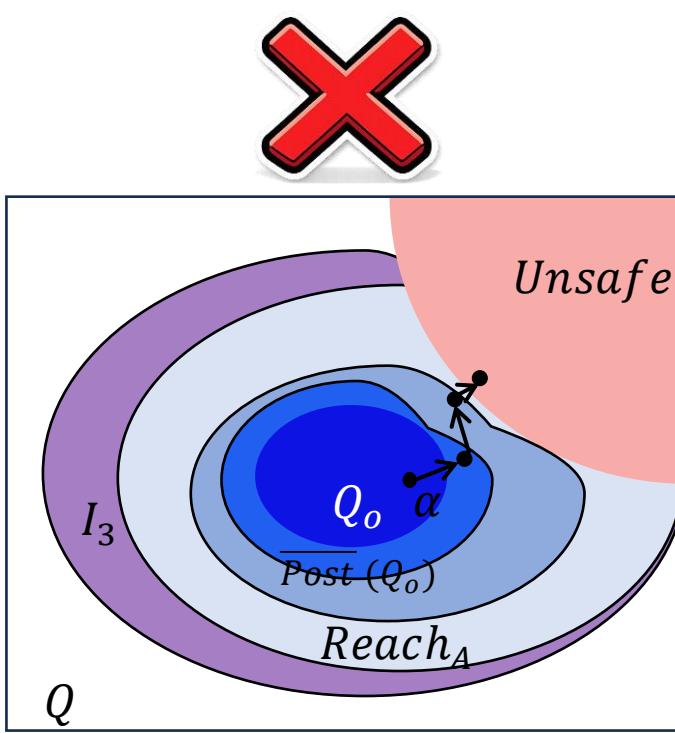
A set $I \subseteq Q$ is an **invariant** if $Reach_A(Q_0) \subseteq I$

Over-approximates the reachable states, not unique, and define everything that *can* happen

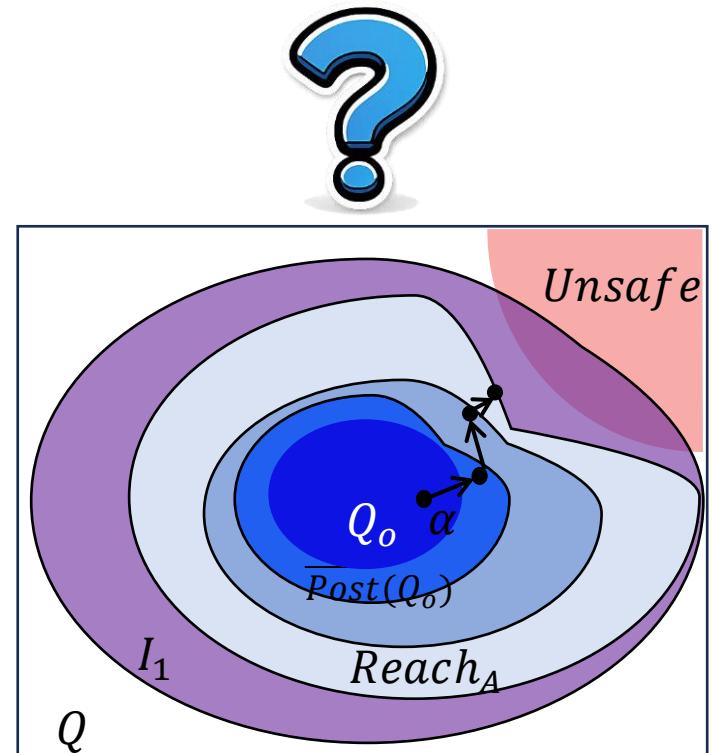
If the algorithm terminates, it returns *an* invariant which may or may not prove safety



System is safe but and verified by invariant I_2



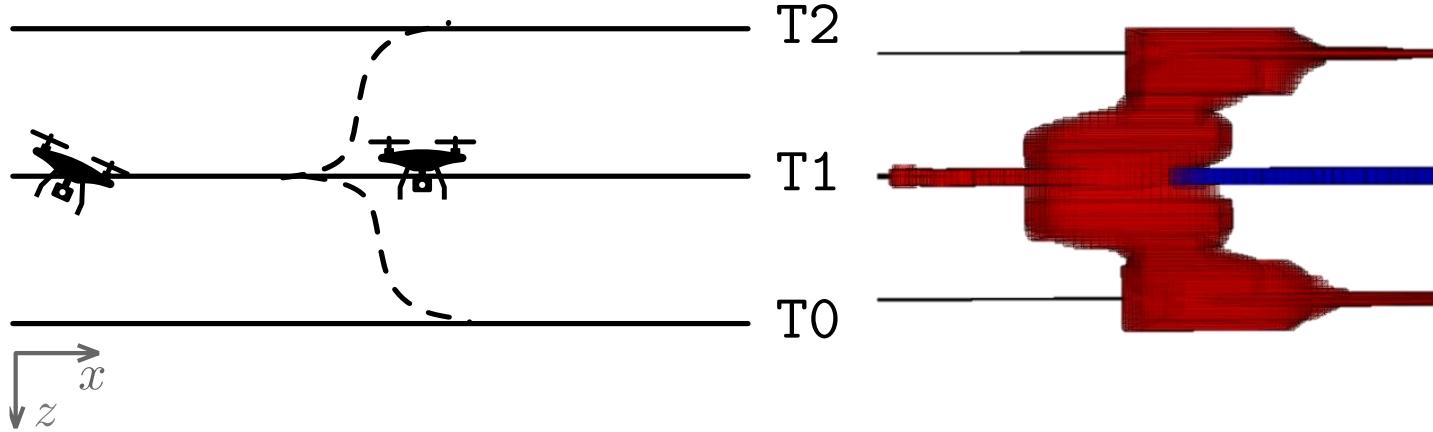
$I_3 \cap Unsafe \neq \emptyset$ and system is unsafe



$I_1 \cap Unsafe \neq \emptyset$ but system is safe

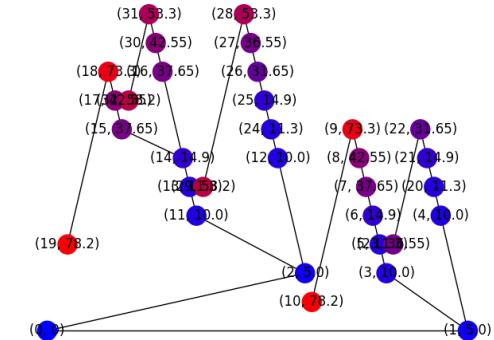
Verse performs reachability analysis (MPO)

```
class Mode(Enum):  
    Normal = auto()  
    Up = auto()  
...  
class Track(Enum):  
    T0 = auto()  
    T1 = auto()  
...  
class State:  
    x: float  
    y: float  
...  
mode: Mode  
track: Track
```



```
def decisionLogic(ego: State, others: List[State], map):  
    if ego.mode == Mode.Normal:  
        if any(isClose(ego, other) for other in others):  
            if map.exist(ego.track, ego.mode, Mode.Up):  
                next.mode = Mode.Up  
                next.track = map.h(ego.track, ego.mode, Mode.Up)  
            if map.exist(ego.track, ego.mode, Mode.Down):  
                next.mode = Mode.Down  
    ...  
  
    assert not any(isVeryClose(ego, other) for other in others), "Separation"
```

```
q1 = QuadrotorAgent("q1", ...) // Defines the dynamics  
q1.set_initial([...], (Mode.Normal, Track.T1))  
scenario.add_agent(q1)  
q2 = ...  
scenario.set_map(M5())  
scenario.simulate(...)  
scenario.verify(...)
```

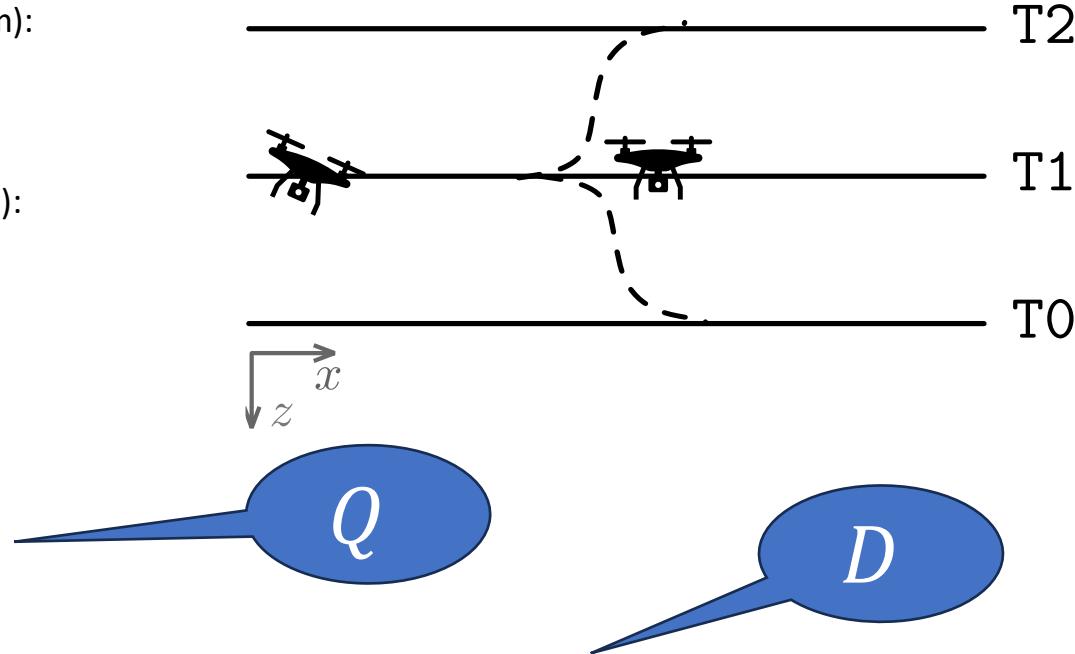
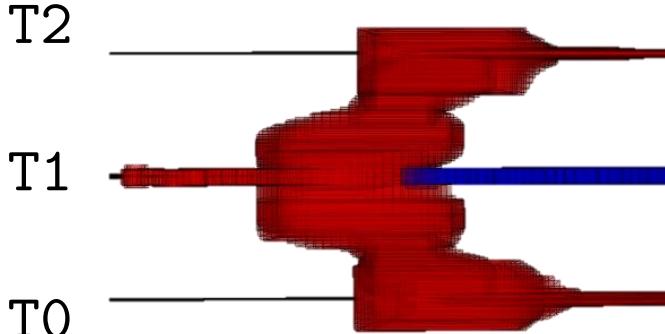
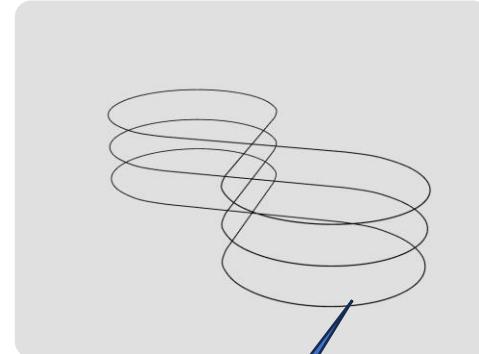


Verse: Python library for reachability analysis (MPO)

```
class Mode(Enum):  
    Normal = auto()  
    Up = auto()  
    ...  
class Track(Enum):  
    T0 = auto()  
    T1 = auto()  
    ...  
class State:  
    x: float  
    y: float  
    ...  
    mode: Mode  
    track: Track
```

```
def decisionLogic(ego: State, others: List[State], map):  
    if ego.mode == Mode.Normal:  
        if any(isClose(ego, other) for other in others):  
            if map.exist(ego.track, ego.mode, Mode.Up):  
                next.mode = Mode.Up  
                next.track = map.h(ego.track, ego.mode, Mode.Up)  
            if map.exist(ego.track, ego.mode, Mode.Down):  
                next.mode = Mode.Down  
    ...
```

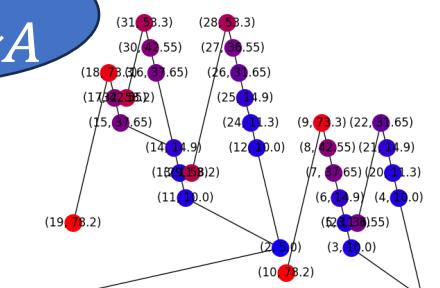
```
assert not any(isVeryClose(ego, other) for other in others), "Separation"
```



```
q1 = QuadrotorAgent("q1", ...)  
q1.set_initial(..., (Mode.Normal, Track.T1))  
scenario.add_agent(q1)  
q2 = ...  
scenario.set_map(M5())  
scenario.simulate(...)  
scenario.verify(...)
```

Reach_A

Unsafe



Reachability Analysis

Benefits

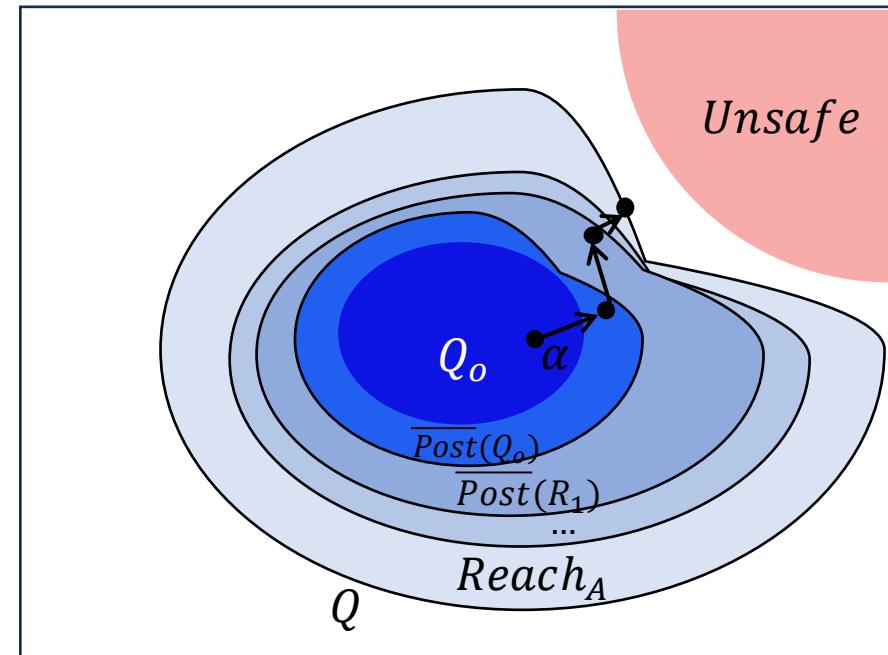
Fully automatic

Limitations

Termination

Scalability

Conservativeness



Alternative approach: Guess and check an invariant that is adequate for safety

Inductive invariants

Proposition 1. If (i) $Q_0 \subseteq I$ and (ii) $Post(I) \subseteq I$ then I is an invariant, i.e., $Reach_A \subseteq I$.

Such invariants are called **inductive invariants**

Proof. Consider any reachable state $q \in Reach_A \subseteq Q$

By definition of reachable state, there is an execution α with $\alpha_k = q$

By induction on k we will show that $q \in I$

Base case, for $k=0$, $\alpha_0 = q_0 \in Q_0 \subseteq I$ [using definition of execution and (i)]

Induction. By inductive hypothesis, suppose $\alpha_k \in I$. We have to show $q = \alpha_{k+1} \in I$.

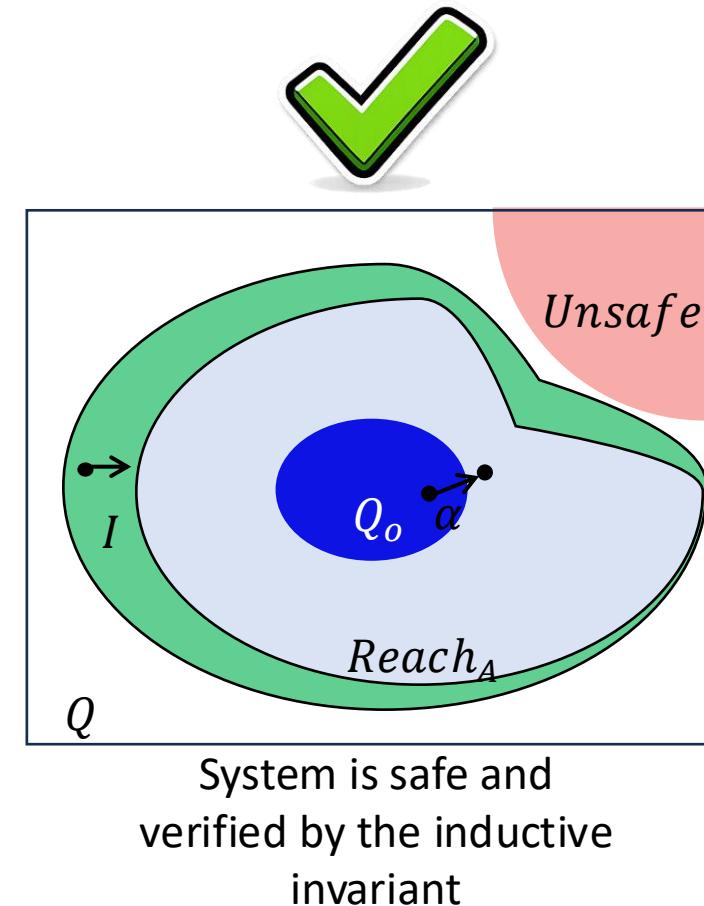
$q \in Post(\alpha_k)$ [Definition of Post, $(\alpha_k, q) \in D$]

$q \in Post(I)$ [Monotonicity of Post. $\alpha_k \in I \Rightarrow Post(\alpha_k) \subseteq Post(I)$]

$q \subseteq I$ [By (ii)]

Inductive invariants and Safety

- ▶ Guess a candidate inductive invariant I
- ▶ If $I \cap \text{Unsafe} = \emptyset$ and $Q_0 \subseteq I$ and $\text{Post}(I) \subseteq I$ then by the Proposition 1 $\text{Reach}_A \subseteq I$ and we have verified safety
- ▶ If the start and transition conditions fail, that does *not* imply that I is not an invariant
- ▶ It only implies that I cannot be checked inductively by Proposition 1.



Automatic Emergency Braking (AEB)

Car must brake to maintain safe gap with lead vehicle/pedestrian

Safety requirement $x_2 > x_1$

$$Q: [x_1, x_2, v_1] \in \mathbb{R}^3$$

$$Unsafe \subseteq \mathbb{R}^3 := \{q \mid q.x_2 \leq q.x_1\}$$

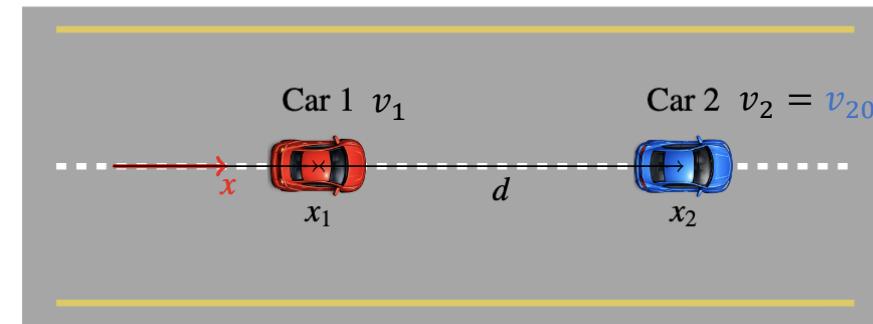
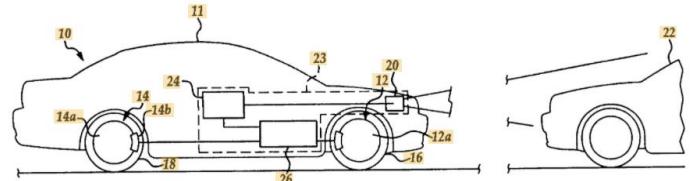
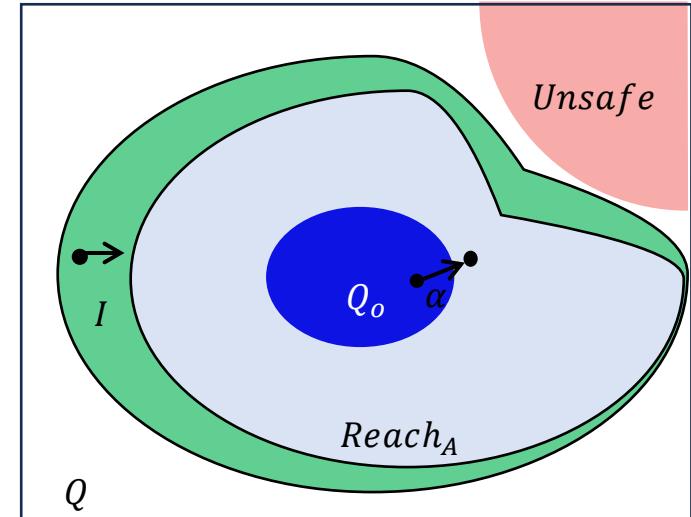


Figure 1



System is safe and verified by
the inductive invariant

Automaton model of AEB

Automaton $A = \langle Q, Q_0, D \rangle$

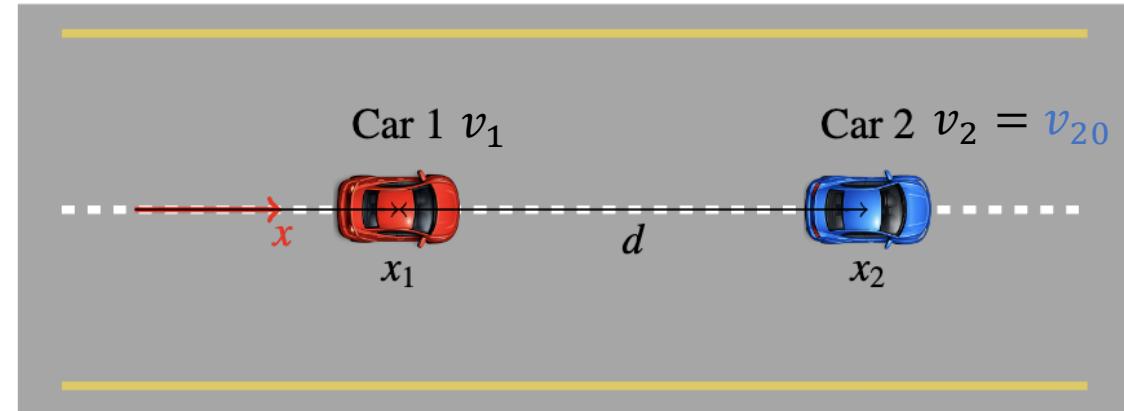
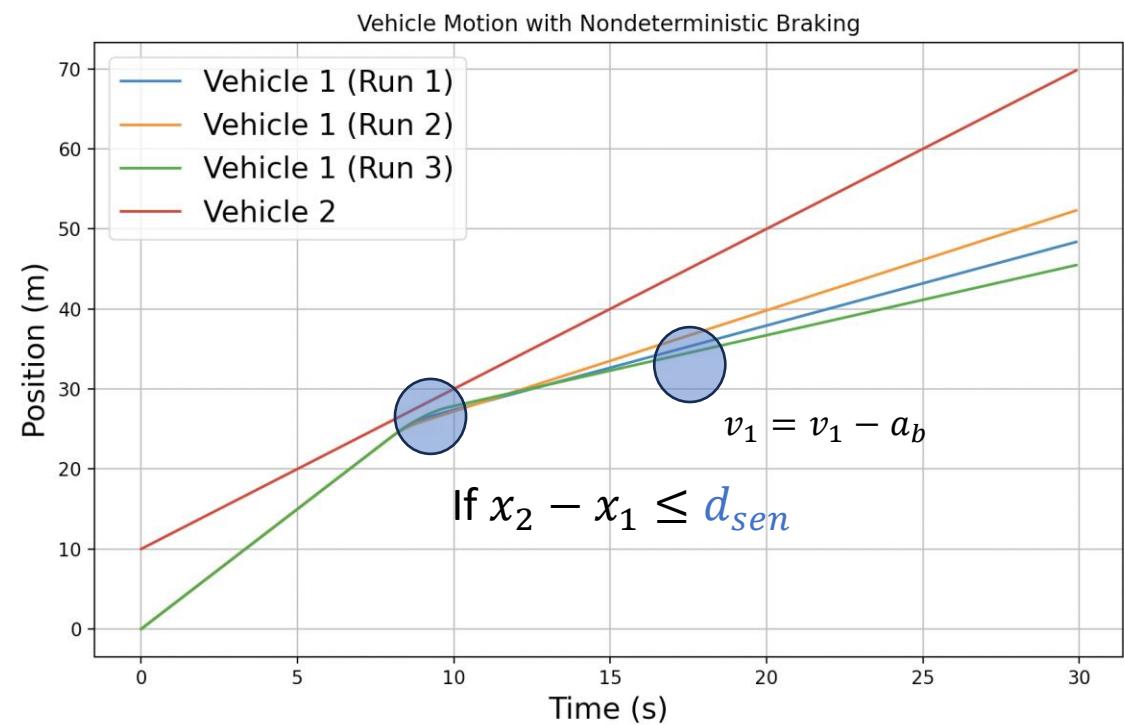
- $Q: [x_1, x_2, v_1] \in \mathbb{R}^3$
- $Q_0 = \{[x_1 = x_{10}, x_2 = x_{20}, v_1 = v_{10}]\}$
- $D \subseteq Q \times Q$ written as a program

If $x_2 - x_1 \leq d_{sen}$

$$v_1 = v_1 - a_b$$

$$x_2 = x_2 + v_2$$

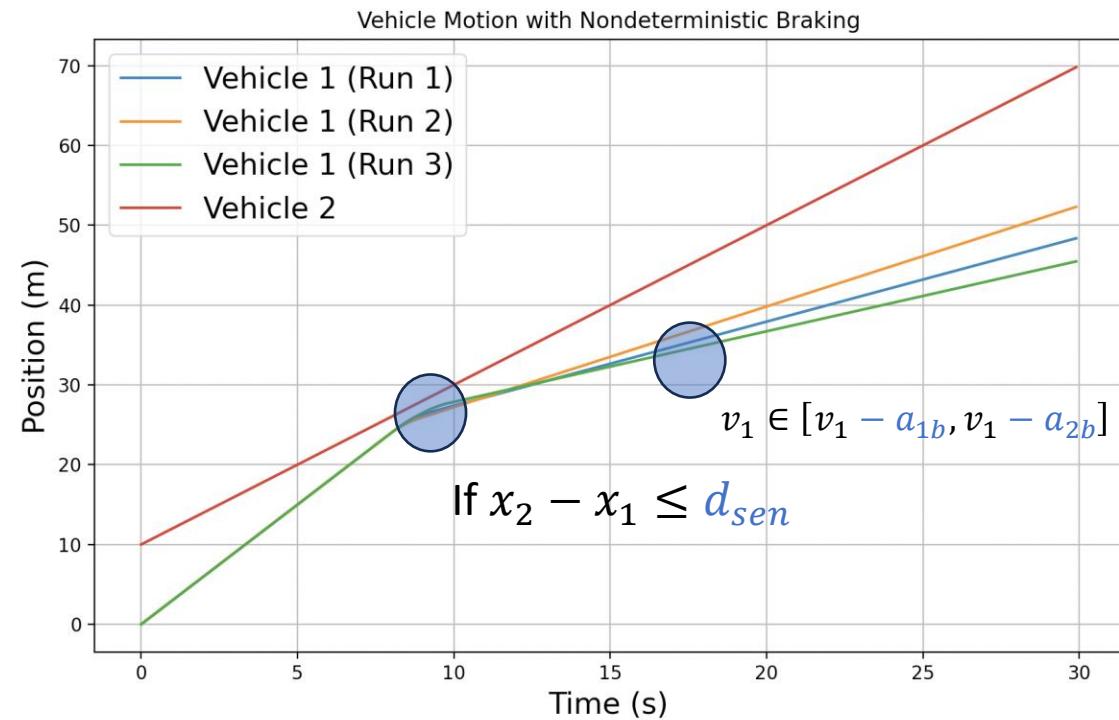
$$x_1 = x_1 + v_1$$



Automaton model of AEB

Automaton $A = \langle Q, Q_0, D \rangle$

- ▶ $Q: \mathbb{R}^3; q \in Q \ q \cdot x_1, q \cdot x_2 \in \mathbb{R}$
- ▶ $Q_0 = \{q \mid [q \cdot x_1 = \nu_{10}, q \cdot x_2 = x_{20}, q \cdot v_1 = \nu_{10}]\}$
- ▶ $(q, q') \in D$ iff
 - if $q \cdot x_2 - q \cdot x_1 \leq d_{sen}$
 - $q' \cdot v_1 = q \cdot v_1 - a_b$
 - $q' \cdot x_2 = q \cdot x_2 + q \cdot v_2$
 - $q' \cdot x_1 = q \cdot x_1 + q \cdot v_1$



AEB

To prove no crash $x_2 > x_1$ in all reachable states, we will need assumptions about initial conditions (x_{10}, x_{20}, v_{10}), sensing distance (d_s), and braking acceleration (a_b)

Discovering assumptions for system correctness is a valuable side-effect of verification

$$\text{Assumption: } x_{20} - x_{10} > d_s > \frac{v_{10}^2}{a_b}$$

The invariance proof will relate *total time of braking* with the initial separation. We need a timer

Checking Inductive Invariant for AEB

```

timer = 0
If  $x_2 - x_1 \leq d_s$ 
  If  $v_1 \geq a_b$ 
     $v_1 = v_1 - a_b$ 
    timer := timer+1
  else
     $v_1 = 0$ 
  else
     $v_1 = v_1$ 
 $x_2 = x_2 + v_2$ 
 $x_1 = x_1 + v_1$ 

```

Invariant. I_1 : $\text{timer} + \frac{v_1}{a_b} \leq \frac{v_{10}}{a_b}$.

Bound on total braking time in terms of velocity and deceleration

Proof. We need to check two conditions for this to be an inductive invariant: (i) $Q_0 \in I_1$ and (ii) $\text{Post}(I_1) \subseteq I_1$.

(i) Consider any $q \in Q_0$. We need to show $q \in I_1$.

$$q.\text{timer} + \frac{q \cdot v_1}{a_b} = 0 + \frac{v_{10}}{a_b} \leq \frac{v_{10}}{a_b}.$$

(ii) Consider any $(q, q') \in D$ with $q \in I_1$. We need to show $q' \in I_1$.

As there are three branches in D , there are 3 cases.

$$(a) q'.\text{timer} + \frac{q' \cdot v_1}{a_b} = q.\text{timer} + 1 + \frac{q \cdot v_1 - a_b}{a_b} = q.\text{timer} + \frac{q \cdot v_1}{a_b} \leq \frac{v_{10}}{a_b}$$

$$(b) q'.\text{timer} + \frac{q' \cdot v_1}{a_b} = q.\text{timer} + 0 \leq \frac{v_{10}}{a_b}$$

$$(c) q'.\text{timer} + \frac{q' \cdot v_1}{a_b} = q.\text{timer} + \frac{q \cdot v_1}{a_b} \leq \frac{v_{10}}{a_b}$$

$$I_2: \text{timer} \leq \frac{v_{10}}{a_b}$$

Invariants and assumptions give correctness proof

Consider any two reachable states:

q_1 is where $x_2 - x_1 \leq d_s$ became true first, and

q_2 is reached from q_1 with $q_2 \cdot x_2 - q_2 \cdot x_1 \leq d_s$ (other reachable states are safe)

$$q_2 \cdot x_2 - q_2 \cdot x_1$$

$$> q_1 \cdot x_2 - q_2 \cdot x_1$$

[1, Because x_2 increased]

$$> q_1 \cdot x_2 - q_1 \cdot x_1 - v_{10} \cdot \frac{v_{10}}{a_b}$$

[$I_2 \Rightarrow \text{timer} \leq \frac{v_{10}}{a_b}$ and $q_2 \cdot x_1 \leq q_1 \cdot x_1 + v_{10} \cdot \frac{v_{10}}{a_b}$]

$$> d_s - \frac{v_{10}^2}{a_b}$$

[By def of q_1]

$$> 0$$

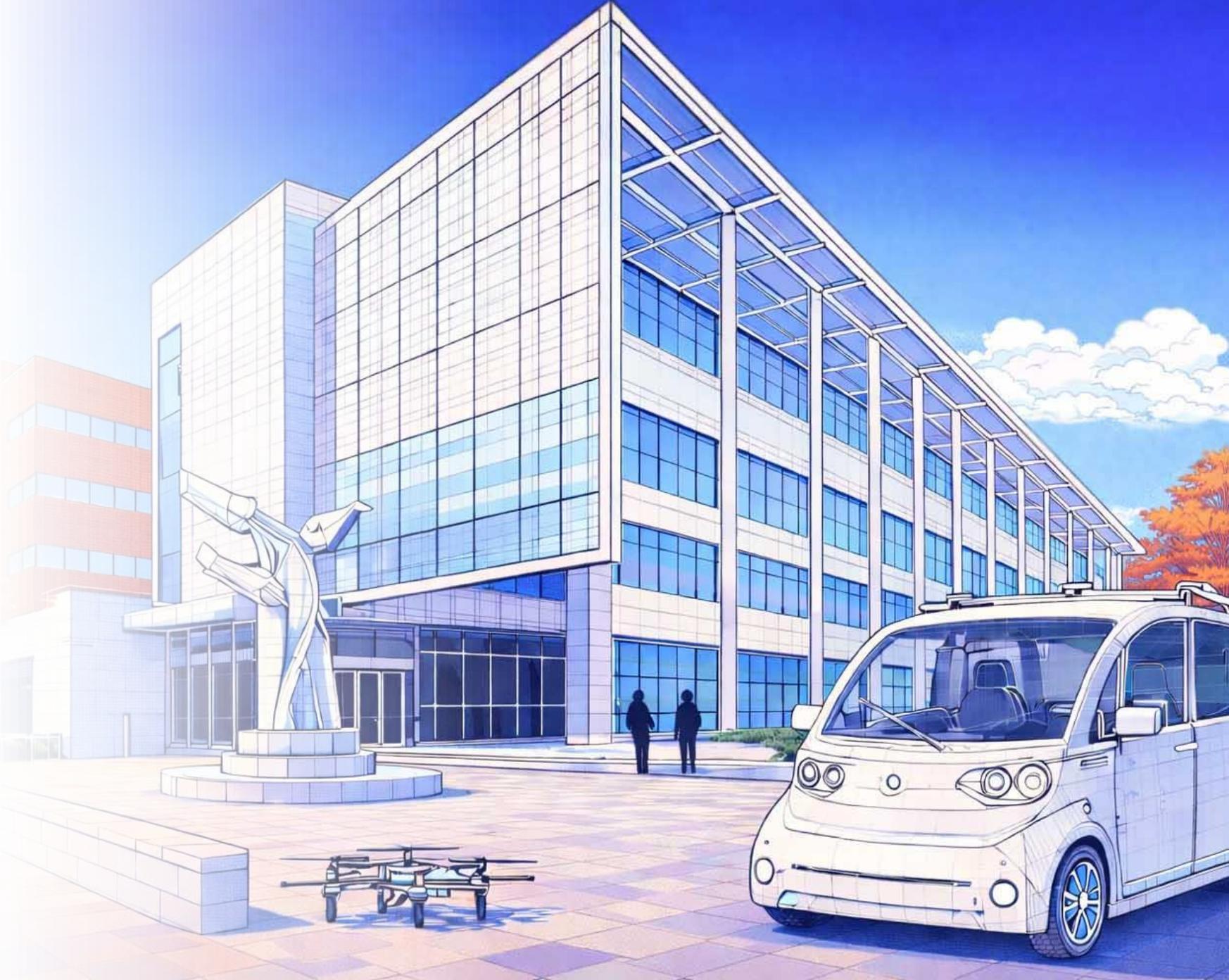
[By Assumption]

Summary

- ▶ Testing alone is inadequate---in theory and practice
- ▶ Automaton (state machine) models, **executions**, and **requirements** give us the language to state correctness claims precisely
- ▶ **Verification** is the problem of proving/disproving such claims
- ▶ **Safety** is a special class of requirements
- ▶ **Reachability analysis** can prove safety automatically*
- ▶ **Inductive invariants** over-approximating reachable states give another method for proving safety

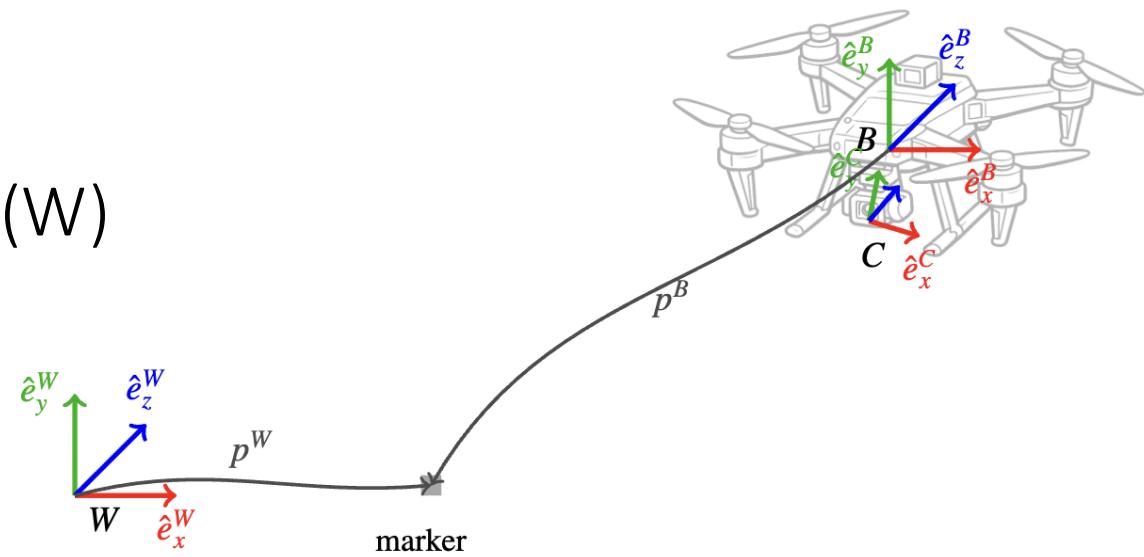
Outline

- Safety Verification
- Coordinate transforms



Coordinate frames

- ▶ Different coordinate frames are used for describing different aspects of an autonomous system, E.g.,
- ▶ position from GPS in world coordinates (W)
- ▶ position of a marker as seen by camera: camera frame (C)
- ▶ torque: body frame (B)
- ▶ What is a coordinate frame?
- ▶ How are different coordinates related?



Coordinate frame

- ▶ A coordinate frame (W) is defined by its origin O_W and 3 axes $\hat{e}_x^W, \hat{e}_y^W, \hat{e}_z^W$
- ▶ Let $p^W = [x^W, y^W, z^W]$ and $p^B = [x^B, y^B, z^B]$ be the coordinates of a point p in the W frame and B frame
- ▶ We would like to convert p^W to p^B and vice versa
- ▶ If the coordinate frames were just translations of each other:
- ▶ Let the origin of B in the frame of W be $p_{O_B}^W$; this is the displacement of O_B from O_W in the W frame
- ▶ Then, $p^W = p_{O_B}^W + p^B$ $p^B = p^W - p_{O_B}^W$
- ▶ What if the frames are rotated? Next time.

