Lecture 3
Safety

Verification

Sayan Mitra

ne

Outl

Safety Verification

Inductive invariants

Coordinates

Safety Verification via Reachability

Reachability(A = (Q, Qy, D))

Ro = Qo

R, =0

i=0

do
R;+1 = Post (R;) U R;
i=i+1

Until R; # R;_4

Return R;

If this algorithm terminates and returns R then Reach,(Q,) € R,
i.e., it computes an over-approximation of the reachable sets of A.

R n Unsafe = @ proves safety, but Reach,(Q,) N Unsafe + @
does not imply that there is a real counterexample

Invariants and safety verification

Aset] € Qisaninvariant if Reachy(Qq) € 1
Over-approximates the reachable states, not unique, and define everything that can happen

If the algorithm terminates, it returns an invariant which may or may not prove safety

Reach

Q

System is safe but and I N Unsafe # @ and I, nUnsafe #Q
verified by invariant I, system is unsafe but svstem is safe

Verse performs reachability analysis (MPO)

class Mode(Enum): . T2
Normal = auto() I/

Up = auto() |
class Track(Enum): is’ I \\ T1
TO = auto() \

T1 =auto() N

= TO

class State: | X

x: float z

y: float

gl = QuadrotorAgent(“ql", ...) // Defines the dynamics
gl.set_initial([...], (Mode.Normal, Track.T1))
scenario.add_agent(ql)

g2 = ...

scenario.set_map(M5())
scenario.simulate(...)

scenario.verify(...)

mode: Mode
track: Track

def decisionLogic(ego: State, others: List[State], map):
if ego.mode == Normal:
if any(isClose(ego, other) for other in others):

if map.exist(ego.track, ego.mode, Up):
next.mode = Up
next.track = map.h(ego.track, ego.mode, Up)

if map.exist(ego.track, ego.mode, Down):
next.mode = Down

assert not any(isVeryClose(ego, other) for other in others), "Seperation”

Verse: Python library for reachability analysis (MPO)

class Mode(Enum): - T2
Normal = auto()
Up = auto() /

class Track(Enum): %’ S T1

TO = auto()
T1 = auto()

class State:
x: float
y: float

gl = QuadrotorAgent(“ql", ...)
gl.set_initial([...], (Mode.Normal, Track.T1))
scenario.add_agent(ql)
g2 = ...
scenario.set_map(M5())
scenario.simulate(...)
scenario.verify(...)

mode: Mode
track: Track

def decisionLogic(ego: State, others: List[State], map):
if ego.mode == Normal:
if any(isClose(ego, other) for other in others):

if map.exist(ego.track, ego.mode, Up):
next.mode = Up
next.track = map.h(ego.track, ego.mode, Up)

if map.exist(ego.track, ego.mode, Down):
next.mode = Down

assert not any(isVeryClose(ego, other) for other in others), "Seperation”

Reachability Analysis

Benefits

Fully automatic

Limitations

Termination

Scalability

Conservativeness

Alternative approach: Guess and check an invariant
that is adequate for safety

Inductive invariants

Proposition 1. If (i) Q, € I and (i) Post(I) € I then I is an invariant, i.e., Reach, S I.
Such invariants are called

Proof. Consider any reachable state q € Reach, € @

By definition of reachable state, there is an execution a with a;, = q

By induction on k we will show that q € I

Base case, for k=0, ay = qo € Qg S I [using definition of execution and (i)]
Induction. By inductive hypothesis, suppose a; € I. We have to show q = a1 € I.
q € Post(a;) [Definition of Post, (ay,q) € D]

q € Post(1) [Monotonicity of Post. a; € I = Post(a;) S Post(l)]

qcl [By (ii)]

Inductive invariants and Safety

Guess a candidate inductive invariant I

fINnUnsafe =@ and Q, €I and Post(l) S|
then by the Proposition 1 Reach, € I and we have
verified safety

If the start and transition conditions fail, that does
not imply that I is not an invariant

It only implies that I cannot be checked inductively
by Proposition 1.

System is safe and
verified by the inductive
invariant

Automatic Emergency Braking (AEB)

Car must brake to maintain safe gap with lead
vehicle/pedestrian

Safety requirement x, > x4

Q: [Xl, X9, vl] = IRB

Unsafe S R3 :={qlq.x, < q.x,}

System is safe and verified by
the inductive invariant

Automaton model of AEB

Automaton A = (Q, Qy, D)
>Q: [x11x21v1] €]RS

Vehicle Motion with Nondeterministic Braking

= Qo = {lx1 = X10,X2 = X0, V1 = V10]} »f — vencernn

I Vehicle 1 (Run 2)

-D € Q X Q written as a program | T Vehicle 1 (Run 3) =

N e Vehicle 2

H: xz - x1 S dsen

N
S)
)

V1 =V — ap
Xy = Xy + Uy
x1=x1+171

w
o
1

Position (m)

N
o
1

P If x, — xl = dse.n

=
o o

0 5 10 15 20 25 30

Time (s)

~
o

Automaton model of AEB

wm
o

Automaton A = (Q, Qy, D)
Q:R3: g€ Qq.x1,q.x, ER
Qo=1q1[9.x; = x10,q.x; =
X20,q-V1 = Vig]}

(q,q') € D iff
fq.x, —q.x; < d.,,

q.v, =
q'.x2 —_ q.xz + q.vz
q’.xl —_ q.x1 + q.vl

Position (m)

fa
o
!

Vehicle Motion with Nondeterministic Braking

1 —— Vehicle 1 (Run 1)

(o)}
o
L

| — Vehicle 2

B
o
L

w
o
L

N
o
L

o
!

Vehicle 1 (Run 2)
—— Vehicle 1 (Run 3)

AEB

To prove no crash x, > x4 in all reachable states, we will need
assumptions about initial conditions (x4, X209, V10), Sensing distance
(d.), and braking acceleration (a;)

Discovering assumptions for system correctness is a valuable side-effect

of verification

2
Vio

Assumption: X, — X109 > dg > .
b
The invariance proof will relate total time of braking with the initial

separation. We need a timer

Checking Inductive Invariant for AEB

Bound on total braking time in terms of

. . v 1%
Invariant. I;: timer + —+ < -

_ ap ap velocity and deceleration
lt]lr;er__f <4 Proof. We need to check two conditions for this to be an inductive
2 1 —=Ms
fv, > a, invariant: (i) Qo € I; and (ii) Post(l,) € I,.
Vi =V~ Gp (i) Considerany q € Qy. We need to show q € I;.
timer :=timer+1) q.vq V10 V1o
else q.tlmer+a—b=0+a—bsa—b.
=0 . : :
e|sev1 (ii) Consider any (g, q') € D with g € I,. We need to show q' € I;.
V) =g As there are three branches in D, there are 3 cases.
Xy =X T 13 ;o q' vy : qvi—ap . qvi _ V1o
i —_— = <
%5 = %, + vy (a) q'.timer + ” q.timer + 1 + ” q.timer + .
!/
(b) q'.timer + qa'vl = q.timer + 0 < %
b b
!/
(c) q'.timer + qa'zl = q.timer + % < 1;—1;

. 1%
I,: timer < =
ap

Invariants and assumptions give correctness proof

Consider any two reachable states:
g1 is where x, — x; < dg became true first, and

g, is reached from g; with q,.x, — g,.x; < d; (other reachable states are safe)
d2-X2 — (2. X1

> (g1.Xy — (5. Xq |1, Because x, increased]

> 1.X; —qq1. X1 — vlo.%’ [I, = timer < 7;1; and qz. X1 < q1.%1 + V1o 210
2

>ds—% [By def of g4 |
b

>0 [By Assumption]

Summary

Testing alone is inadequate---in theory and practice

Automaton (state machine) models, ,and give
us the language to state correctness claims precisely

is the problem of proving/disproving such claims
is a special class of requirements
can prove safety automatically*

over-approximating reachable states give another
method for proving safety

Outline

e Safety Verification

* Coordinate transforms

Coordinate frames

Different coordinate frames are used for
describing different aspects of an
autonomous system, E.g.,

position from GPS in world coordinates (W)
position of a marker as seen by camera:

camera frame (C) [S
P

torque: body frame (B) W
What is a coordinate frame?
How are different coordinates related?

marker

Coordinate frame

~W @W

é;

A coordinate frame (W) is defined by its origin Oy, and 3 axes &Y, éj‘ﬁ", ey .
W
‘ é P

Let p = [xW,yW, zW] and p® = [x5, ¥, zB] be the coordinatesof ¢ "
point p in the W frame and B frame

We would like to convert p" to p® and vice versa

If the coordinate frames were just translations of each other:

Let the origin of B in the frame of W be pg; ; this is the displacement
of Og from Oy, in the W frame

Then, p" =pg, +p° p” =p" - po,

What if the frames are rotated? Next time.

	Slide 1: ECE 484 Lecture 3 Safety Verification
	Slide 2: Outline
	Slide 3: Safety Verification via Reachability
	Slide 4: Invariants and safety verification
	Slide 5: Verse performs reachability analysis (MP0)
	Slide 6: Verse: Python library for reachability analysis (MP0)
	Slide 7: Reachability Analysis
	Slide 8: Inductive invariants
	Slide 9: Inductive invariants and Safety
	Slide 10: Automatic Emergency Braking (AEB)
	Slide 11: Automaton model of AEB
	Slide 12: Automaton model of AEB
	Slide 13: AEB
	Slide 14: Checking Inductive Invariant for AEB
	Slide 15: Invariants and assumptions give correctness proof
	Slide 16: Summary
	Slide 17: Outline
	Slide 18: Coordinate frames
	Slide 19: Coordinate frame

