
ECE 484
Lecture 3
Safety
Verification
Sayan Mitra

Outline

Safety Verification

Inductive invariants

Coordinates

Safety Verification via Reachability

If this algorithm terminates and returns 𝑅 then 𝑅𝑒𝑎𝑐ℎ𝐴(𝑄0) ⊆ 𝑅,

i.e., it computes an over-approximation of the reachable sets of A.

𝑅 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅ proves safety, but 𝑅𝑒𝑎𝑐ℎ𝐴 𝑄0 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 ≠ ∅

does not imply that there is a real counterexample

Reachability(𝐴 = 𝑄, 𝑄0, 𝐷)

𝑅0 = 𝑄0

𝑅1 = ∅

𝑖 = 0

do

 𝑅𝑖+1 = 𝑃𝑜𝑠𝑡 (𝑅𝑖) ∪ 𝑅𝑖

 𝑖 = 𝑖 + 1

Until 𝑅𝑖 ≠ 𝑅𝑖−1

Return 𝑅𝑖 𝑃𝑜𝑠𝑡(𝑅1)

𝑃𝑜𝑠𝑡(𝑄𝑜)

𝛼

𝑈𝑛𝑠𝑎𝑓𝑒

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

…

Invariants and safety verification

A set 𝐼 ⊆ 𝑄 is an invariant if 𝑅𝑒𝑎𝑐ℎ𝐴(𝑄0) ⊆ 𝐼

Over-approximates the reachable states, not unique, and define everything that can happen

If the algorithm terminates, it returns an invariant which may or may not prove safety

𝑈𝑛𝑠𝑎𝑓𝑒

𝑃𝑜𝑠𝑡(𝑄𝑜)

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴
𝐼1

𝐼1 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 ≠ ∅
but system is safe

𝑈𝑛𝑠𝑎𝑓𝑒

𝑃𝑜𝑠𝑡(𝑄𝑜)

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝐼2

System is safe but and
verified by invariant 𝐼2

𝑈𝑛𝑠𝑎𝑓𝑒

𝑃𝑜𝑠𝑡 (𝑄𝑜)

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝐼3

𝐼3 ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 ≠ ∅ and
system is unsafe

class Mode(Enum):

 Normal = auto()
 Up = auto()
 …

class Track(Enum):
 T0 = auto()
 T1 = auto()

 …
class State:
 x: float

 y: float
 …
 mode: Mode

 track: Track

def decisionLogic(ego: State, others: List[State], map):

 if ego.mode == Normal:
 if any(isClose(ego, other) for other in others):
 if map.exist(ego.track, ego.mode, Up):

 next.mode = Up
 next.track = map.h(ego.track, ego.mode, Up)
 if map.exist(ego.track, ego.mode, Down):

 next.mode = Down
 …

assert not any(isVeryClose(ego, other) for other in others), "Seperation"

Verse performs reachability analysis (MP0)

q1 = QuadrotorAgent(”q1", …) // Defines the dynamics

q1.set_initial([…], (Mode.Normal, Track.T1))
scenario.add_agent(q1)
q2 = …

scenario.set_map(M5())
scenario.simulate(…)
scenario.verify(…)

class Mode(Enum):

 Normal = auto()
 Up = auto()
 …

class Track(Enum):
 T0 = auto()
 T1 = auto()

 …
class State:
 x: float

 y: float
 …
 mode: Mode

 track: Track

def decisionLogic(ego: State, others: List[State], map):

 if ego.mode == Normal:
 if any(isClose(ego, other) for other in others):
 if map.exist(ego.track, ego.mode, Up):

 next.mode = Up
 next.track = map.h(ego.track, ego.mode, Up)
 if map.exist(ego.track, ego.mode, Down):

 next.mode = Down
 …

assert not any(isVeryClose(ego, other) for other in others), "Seperation"

Verse: Python library for reachability analysis (MP0)

q1 = QuadrotorAgent(”q1", …)

q1.set_initial([…], (Mode.Normal, Track.T1))
scenario.add_agent(q1)
q2 = …

scenario.set_map(M5())
scenario.simulate(…)
scenario.verify(…)

𝑄 𝐷

𝑈𝑛𝑠𝑎𝑓𝑒

𝑅𝑒𝑎𝑐ℎ𝐴

Reachability Analysis

Benefits

Fully automatic

Limitations

Termination

Scalability

Conservativeness

Alternative approach: Guess and check an invariant

that is adequate for safety

𝑃𝑜𝑠𝑡(𝑅1)

𝑃𝑜𝑠𝑡(𝑄𝑜)

𝛼

𝑈𝑛𝑠𝑎𝑓𝑒

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

…

Inductive invariants

Proposition 1. If (i) Q0 ⊆ 𝐼 and (ii) 𝑃𝑜𝑠𝑡 𝐼 ⊆ 𝐼 then 𝐼 is an invariant, i.e., ReachA ⊆ 𝐼.

Such invariants are called inductive invariants

Proof. Consider any reachable state 𝒒 ∈ 𝑅𝑒𝑎𝑐ℎ𝐴 ⊆ 𝑄

By definition of reachable state, there is an execution 𝛼 with 𝛼𝑘 = 𝒒

By induction on k we will show that 𝒒 ∈ 𝐼

Base case, for k=0, 𝛼0 = 𝑞0 ∈ 𝑄0 ⊆ 𝐼 [using definition of execution and (i)]

Induction. By inductive hypothesis, suppose 𝛼𝑘 ∈ 𝐼. We have to show 𝒒 = 𝛼𝑘+1 ∈ 𝐼.

𝒒 ∈ 𝑃𝑜𝑠𝑡(𝛼𝑘) [Definition of Post, (𝛼𝑘 , 𝒒) ∈ 𝐷]

𝒒 ∈ 𝑃𝑜𝑠𝑡 𝐼 [Monotonicity of Post. 𝛼𝑘 ∈ 𝐼 ⇒ 𝑃𝑜𝑠𝑡 𝛼𝑘 ⊆ 𝑃𝑜𝑠𝑡 𝐼]

𝒒 ⊆ 𝐼 [By (ii)]

Inductive invariants and Safety

►Guess a candidate inductive invariant 𝐼

► If I ∩ 𝑈𝑛𝑠𝑎𝑓𝑒 = ∅ and Q0 ⊆ 𝐼 and 𝑃𝑜𝑠𝑡 𝐼 ⊆ 𝐼
then by the Proposition 1 Reach𝐴 ⊆ 𝐼 and we have
verified safety

► If the start and transition conditions fail, that does
not imply that 𝐼 is not an invariant

► It only implies that 𝐼 cannot be checked inductively
by Proposition 1.

𝑈𝑛𝑠𝑎𝑓𝑒

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝐼

System is safe and
verified by the inductive

invariant

Automatic Emergency Braking (AEB)

Car must brake to maintain safe gap with lead

vehicle/pedestrian

Safety requirement 𝑥2 > 𝑥1

𝑄: [𝑥1, 𝑥2, 𝑣1] ∈ ℝ3

𝑈𝑛𝑠𝑎𝑓𝑒 ⊆ ℝ3 ≔ 𝒒 𝒒. 𝑥2 ≤ 𝒒. 𝑥1}

𝑣1 𝑣2 = 𝑣20

𝑈𝑛𝑠𝑎𝑓𝑒

𝛼

𝑄

𝑄𝑜

𝑅𝑒𝑎𝑐ℎ𝐴

𝐼

System is safe and verified by

the inductive invariant

Automaton model of AEB

Automaton 𝐴 = 𝑄, 𝑄0, 𝐷

►𝑄: [𝑥1, 𝑥2, 𝑣1] ∈ ℝ3

►𝑄0 = {[𝑥1 = 𝑥10, 𝑥2 = 𝑥20, 𝑣1 = 𝑣10]}

►𝐷 ⊆ 𝑄 × 𝑄 written as a program

If 𝑥2 − 𝑥1 ≤ 𝑑𝑠𝑒𝑛

 𝑣1 = 𝑣1 − 𝑎𝑏

𝑥2 = 𝑥2 + 𝑣2

𝑥1 = 𝑥1 + 𝑣1

𝑣1 𝑣2 = 𝑣20

If 𝑥2 − 𝑥1 ≤ 𝑑𝑠𝑒𝑛

𝑣1 = 𝑣1 − 𝑎𝑏

Automaton model of AEB

Automaton 𝐴 = 𝑄, 𝑄0, 𝐷

►𝑄: ℝ3; 𝒒 ∈ 𝑄 𝒒. 𝑥1, 𝒒. 𝑥2 ∈ ℝ

►𝑄0 = 𝒒 [𝒒. 𝑥1 = 𝑥10, 𝒒. 𝑥2 =
𝑥20, 𝒒. 𝑣1 = 𝑣10]}

► 𝒒, 𝒒′ ∈ 𝐷 iff
If 𝒒. 𝑥2 − 𝒒. 𝑥1 ≤ 𝑑𝑠𝑒𝑛

 𝒒′. 𝑣1 = 𝒒. 𝑣1 − 𝑎𝑏

𝒒′. 𝑥2 = 𝒒. 𝑥2 + 𝒒. 𝑣2

𝒒′. 𝑥1 = 𝒒. 𝑥1 + 𝒒. 𝑣1

If 𝑥2 − 𝑥1 ≤ 𝑑𝑠𝑒𝑛

𝑣1 ∈ 𝑣1 − 𝑎1𝑏 , 𝑣1 − 𝑎2𝑏

AEB

To prove no crash 𝑥2 > 𝑥1 in all reachable states, we will need
assumptions about initial conditions (𝑥10, 𝑥20, 𝑣10), sensing distance
𝑑𝑠 , and braking acceleration (𝑎𝑏)

Discovering assumptions for system correctness is a valuable side-effect
of verification

Assumption: 𝑥20 − 𝑥10 > 𝑑𝑠 >
𝑣10

2

𝑎𝑏

The invariance proof will relate total time of braking with the initial
separation. We need a timer

Checking Inductive Invariant for AEB

timer = 0
If 𝑥2 − 𝑥1 ≤ 𝑑𝑠

If 𝑣1 ≥ 𝑎𝑏

𝑣1 = 𝑣1 − 𝑎𝑏

timer := timer+1
 else
 𝑣1 = 0
else
 𝑣1 = 𝑣1

𝑥2 = 𝑥2 + 𝑣2

𝑥1 = 𝑥1 + 𝑣1

Invariant. 𝐼1: timer +
𝑣1

𝑎𝑏
≤

𝑣10

𝑎𝑏
.

Proof. We need to check two conditions for this to be an inductive
invariant: (i) 𝑄0 ∈ 𝐼1 and (ii) 𝑃𝑜𝑠𝑡 𝐼1 ⊆ 𝐼1.

(i) Consider any 𝑞 ∈ 𝑄0. We need to show 𝑞 ∈ 𝐼1.

𝑞. 𝑡𝑖𝑚𝑒𝑟 +
𝑞.𝑣1

𝑎𝑏
= 0 +

𝑣10

𝑎𝑏
≤

𝑣10

𝑎𝑏
.

(ii) Consider any 𝑞, 𝑞′ ∈ 𝐷 with 𝑞 ∈ 𝐼1. We need to show 𝑞′ ∈ 𝐼1.

As there are three branches in 𝐷, there are 3 cases.

(a) 𝑞′. 𝑡𝑖𝑚𝑒𝑟 +
𝑞′.𝑣1

𝑎𝑏
= 𝑞. 𝑡𝑖𝑚𝑒𝑟 + 1 +

𝑞.𝑣1−𝑎𝑏

𝑎𝑏
= 𝑞. 𝑡𝑖𝑚𝑒𝑟 +

𝑞.𝑣1

𝑎𝑏
≤

𝑣10

𝑎𝑏

(b) 𝑞′. 𝑡𝑖𝑚𝑒𝑟 +
𝑞′.𝑣1

𝑎𝑏
= 𝑞. 𝑡𝑖𝑚𝑒𝑟 + 0 ≤

𝑣10

𝑎𝑏

(c) 𝑞′. 𝑡𝑖𝑚𝑒𝑟 +
𝑞′.𝑣1

𝑎𝑏
= 𝑞. 𝑡𝑖𝑚𝑒𝑟 +

𝑞.𝑣1

𝑎𝑏
≤

𝑣10

𝑎𝑏

𝐼2: timer ≤
𝑣10

𝑎𝑏

Bound on total braking time in terms of
velocity and deceleration

Invariants and assumptions give correctness proof

Consider any two reachable states:

𝑞1 is where 𝑥2 − 𝑥1 ≤ 𝑑𝑠 became true first, and

𝑞2 is reached from 𝑞1 with q2. 𝑥2 − 𝑞2. 𝑥1 ≤ 𝑑𝑠 (other reachable states are safe)
𝑞2. 𝑥2 − 𝑞2. 𝑥1

 > 𝑞1. 𝑥2 − 𝑞2. 𝑥1 [1, Because 𝑥2 increased]

 > 𝑞1. 𝑥2 −𝑞1. 𝑥1 − 𝑣10.
𝑣10

𝑎𝑏
 [I2 ⇒ timer ≤

𝑣10

𝑎𝑏
 and 𝑞2. 𝑥1 ≤ 𝑞1. 𝑥1 + 𝑣10.

𝑣10

𝑎𝑏
]

 > 𝑑𝑠 −
𝑣10

2

𝑎𝑏
 [By def of 𝑞1]

 > 0 [By Assumption]

Summary

►Testing alone is inadequate---in theory and practice

►Automaton (state machine) models, executions, and requirements give
us the language to state correctness claims precisely

►Verification is the problem of proving/disproving such claims

►Safety is a special class of requirements

►Reachability analysis can prove safety automatically*

► Inductive invariants over-approximating reachable states give another
method for proving safety

Outline

• Safety Verification

• Coordinate transforms

Coordinate frames

►Different coordinate frames are used for
describing different aspects of an
autonomous system, E.g.,

►position from GPS in world coordinates (W)

►position of a marker as seen by camera:
camera frame (C)

► torque: body frame (B)

►What is a coordinate frame?

►How are different coordinates related?

Coordinate frame
► A coordinate frame (W) is defined by its origin 𝑂𝑊 and 3 axes Ƹ𝑒𝑥

𝑊 , Ƹ𝑒𝑦
𝑊,

Ƹ𝑒𝑧
𝑊

► Let 𝑝𝑊 = [𝑥𝑊 , 𝑦𝑊 , 𝑧𝑊] and 𝑝𝐵 = [𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵] be the coordinates of a
point 𝑝 in the 𝑊 frame and 𝐵 frame

► We would like to convert 𝑝𝑊 to 𝑝𝐵 and vice versa

► If the coordinate frames were just translations of each other:

► Let the origin of B in the frame of W be 𝑝𝑂𝐵

𝑊 ; this is the displacement
of 𝑂𝐵 from 𝑂𝑊 in the 𝑊 frame

► Then, 𝑝𝑊 = 𝑝𝑂𝐵

𝑊 + 𝑝𝐵 𝑝𝐵 = 𝑝𝑊 − 𝑝𝑂𝐵

𝑊

► What if the frames are rotated? Next time.

	Slide 1: ECE 484 Lecture 3 Safety Verification
	Slide 2: Outline
	Slide 3: Safety Verification via Reachability
	Slide 4: Invariants and safety verification
	Slide 5: Verse performs reachability analysis (MP0)
	Slide 6: Verse: Python library for reachability analysis (MP0)
	Slide 7: Reachability Analysis
	Slide 8: Inductive invariants
	Slide 9: Inductive invariants and Safety
	Slide 10: Automatic Emergency Braking (AEB)
	Slide 11: Automaton model of AEB
	Slide 12: Automaton model of AEB
	Slide 13: AEB
	Slide 14: Checking Inductive Invariant for AEB
	Slide 15: Invariants and assumptions give correctness proof
	Slide 16: Summary
	Slide 17: Outline
	Slide 18: Coordinate frames
	Slide 19: Coordinate frame

