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Perception in an autonomous system
Perception converts sensor signals to state 

estimates for decision making and control

Examples: 

• Type or Class of lead vehicle, traffic sign

• Pose position of ego on map, relative to lanes, 
relative to lead vehicle, attitude of drone relative 
to marker

• Speed, angular speed of ego and others

• Acceleration, intention of the pedestrian

Fundamental questions

• What can be estimated? Observability

• What resources (bits) are needed for achieving 
certain quality of estimation?

• How to build estimators?

Testing and verification
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Recognizing object classes from camera 
images: Classification



Goal: Learn/build a function that predicts the object in an image

Apply a prediction function to a representation of the image to 
get the desired output:

   f(    ) = “apple”

   f(    ) = “tomato”

   f(    ) = “cow”



Statistical learning framework: Train classifier from training data

y = f(x)

Training: given a training set of labeled examples 
{(x1,y1), …, (xN,yN)}, estimate the prediction function f by minimizing the prediction 
error on the training set

Validation: tune (hyper)parameters in f, learning rate

Testing: apply f to a never before seen test data x and output predicted value y = f(x)

output prediction 

function

feature 

representation



Outline

Linear classifiers 

Neural networks

• Universal approximators

• Forward pass

• Backpropagation; Gradient 
descent

• Exploding and imploding 
gradients

Best practices
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Linear classifiers

Read support vector machines (SVM)  

https://greitemann.dev/svm-demo 

Read about SIFT, HOG, bag of visual 

words to learn about image features.

Images or feature representations of images 𝒙 ∈
ℝ𝑑

A constant weight vector w ∈ ℝ𝑑 and a scalar bias 

𝑏 ∈ ℝ define a binary classifier

𝑓 𝒙 = sgn(𝑤. 𝒙 + 𝒃)

The classification task is to find the weight and the 

bias w, b  that define a linear separator for the 

given data set

The separators are also called decision boundaries

SVM classifiers try to find a linear separator that 

maximizes the distance of the separator to the 

points

https://greitemann.dev/svm-demo
https://greitemann.dev/svm-demo
https://greitemann.dev/svm-demo
https://publish.illinois.edu/safe-autonomy/files/2020/09/Fall20-Lecture5_recognition.pdf
https://publish.illinois.edu/safe-autonomy/files/2020/09/Fall20-Lecture5_recognition.pdf


Visualizing linear classifiers with many classes

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/


Limitations of Linear Classifiers

• Input: A feature vector 𝒙 ∈ ℝ𝑑.

• Weights and bias: 𝒘 ∈ ℝ𝑑  , 𝑏 ∈ ℝ.

• Prediction (binary classification example): ො𝑦 = 𝒘𝑇𝒙 + 𝑏 

• Limitations: The data may not be linearly separable

• Linear separators decision boundaries may not capture 
nonlinear relationships between classes



Nonlinearity via Neural Networks

A neural network is a function 𝑓𝑁𝑁: ℝ𝑑 → ℝ𝑘  defined as a composition 
of layers of linear and nonlinear transformations.

A single layer performs a linear transformation followed by a nonlinear 
activation

𝑤. 𝒙 + 𝑏 ∈ ℝ

𝑊. 𝒙 + 𝒃 ∈ ℝ𝑚 weight matrix 𝑊 ∈ ℝ𝑚×𝑑  bias vector 𝒃 ∈ ℝ𝑚 

𝒚 = 𝑔 𝑊𝒙 + 𝒃  nonlinear activation 𝑔 ∈ ℝ𝑚 → ℝ𝑚

𝑔: activation function e.g. 𝑅𝑒𝐿𝑈 𝑧 = max 𝑧, 0 , 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
𝑒𝑧

1+𝑒𝑧

𝒙 𝒚

𝑊3,4

1-Layer Perceptron

𝑊1,1



Activation functions and their derivatives

𝑅𝑒𝐿𝑈 𝑧 = max 𝑧, 0   
𝑑𝑅𝑒𝐿𝑈 𝑧

𝑑𝑧
= {0,1} 

𝜎 𝑧 =
𝑒𝑧

1+𝑒𝑧   𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎 𝑧 )



Nonlinearity via Neural Networks

A neural network is a function 𝑓𝑁𝑁: ℝ𝑑 → ℝ𝑘  defined as a composition 
of layers of linear and nonlinear transformations.

2-layer network with one hidden layer and input 𝒙 ∈ ℝ𝑑

• 𝒉 = 𝑔 𝑊 1 𝒙 + 𝒃 1   (hidden layer)

• ෝ𝒚 = 𝑊(2)𝒉 + 𝒃(2)  (output layer)

ෝ𝒚 = 𝑊(2)𝑔 𝑊 1 𝒙 + 𝒃 1 + 𝒃(2)

𝑊(1) ∈ ℝ𝑚×𝑑  𝑊 2 ∈ ℝ𝑘×𝑚, for m of hidden units are the weights

𝑏 1 ∈ ℝ𝑚 𝑏 2 ∈ ℝ𝑘  are the biases

𝑔: activation function e.g. 𝑅𝑒𝐿𝑈 𝑧 = max 𝑧, 0 , 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
𝑒𝑧

1+𝑒𝑧

Example  k=2 for lane boundary parameters, k=6 for pose components

𝒙 𝒉
ෝ𝒚

𝑊3,4
1 𝑊4,2

2

Multi-Layer 

Perceptron (MLP)



Universal Approximation Theorem [Cybenko, G. 1989]
Any continuous function 𝑓 on a compact domain can be 

approximated to arbitrary precision with a  sufficiently 
large (but finite) single-hidden-layer feedforward 
network with a suitable activation function.

• 𝑓can be approximated arbitrarily by a sum of towers

• Exercise. A tower function can be approximated by a 
network with  1 layer (2 ReLUs ~= _| )

• Sum of towers can be created by adding more 
elements in the hidden layer

Neural networks are expressive enough to infer complex 
state estimates from raw pixels

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal 
function." Mathematics of Control, Signals and Systems, 2(4), 303–314. 

https://www.youtube.com/watch?v=Ijqkc7OLenI

x

w=1000

b=-300

y=𝑅𝑒𝐿𝑈(1000x-300)



Neural Network Forward Propagation

For a given input 𝒙𝒊:
• Compute hidden layer pre-activation:  𝒛(1) = 𝑊(1)𝒙 + 𝒃(1).

• Apply activation: 𝒉 = 𝑓(𝒛(1)).

• Compute output layer: ෝ𝒚𝑖 = 𝑊(2)𝒉 + 𝒃(2).

This results in a prediction ෝ𝒚𝑖  for input 𝒙𝒊, e.g.:
• For lane estimation: ෝ𝒚 ∈ ℝ𝐻×𝑊if predicting per-pixel 

segmentation, 𝑜𝑟 ෝ𝒚 ∈ ℝ𝑝 if predicting lane embedding.

• For 6DOF pose: ෝ𝒚 ∈ ℝ6, representing (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾) or other 
parameterization of rotation and translation.

𝒙𝒊
𝒉

ෝ𝒚𝒊

𝑊3,4
1 𝑊4,2

2

𝑧(1)



Backpropagation and Gradient-Based Training

Loss function: A scalar function 𝐿(𝑊, {𝑦𝑖 , 𝑥𝑖 , ො𝑦𝑖}) that measures how 
well a prediction ෝ𝒚𝑖  matches the ground truth 𝒚𝒊. 

Requires knowledge of ground truth/labels: supervised learning

For lane segmentation (classification per pixel) cross-entropy loss 
suitable when predictions are probabilities 𝑦𝑖 ∈ {0,1} ො𝑦𝒊 ∈ [0,1]

𝐿(𝑊, {𝑦𝑖 , 𝑥𝑖 , ො𝑦𝑖}) = −
1

𝑁
σ𝑖=1

𝑁 [𝑦𝑖 log ො𝑦𝑖 + 1 − 𝑦𝑖 log(1 − ො𝑦𝑖)], 

For pose regression, L2 distance:  𝐿 = −
1

𝑁
σ𝑖=1

𝑁 |ෝ𝒚𝑖 − 𝒚𝒊|2
2

Training: algorithm/process of minimizing loss 𝐿(𝑊) by changing the 
weights (W) and the biases (b) of the neural network (f) 

E.g. gradient descent with back propagation

𝐿(W)

W

𝜕𝐿

𝜕𝑊





Backpropagation Background: Vector Calculus refresher

Differentiating scalars, vectors, and matrices: 

𝒚 = 𝒚 1 , … , 𝒚 𝑛 𝑇
; 

𝜕

𝜕𝒙
= (

𝜕

𝜕𝒙 1 ,
𝜕

𝜕𝒙 2 ,
𝜕

𝜕𝒙(3)) Gradient operator ∇ 

𝜕𝑦

𝜕𝑥
 , 

𝜕𝒚

𝜕𝑥
=

𝜕𝒚 1

𝜕𝑥
…

𝜕𝒚 𝑛

𝜕𝑥

, 
𝜕𝑌

𝜕𝑥
=

𝜕𝑌 1,1

𝜕𝑥
…

…
𝜕𝑌 𝑖,𝑗

𝜕𝑥

  Element-wise differentiation of vectors and matrices

𝜕𝑦

𝜕𝒙
=

𝜕

𝜕𝒙
. 𝑦 =

𝜕

𝜕𝒙 1 ,
𝜕

𝜕𝒙 2 ,
𝜕

𝜕𝒙 3 . 𝑦   Gradient of y; row vector of partials

𝜕𝒚

𝜕𝒙
=

𝜕

𝜕𝒙
. 𝒚 =

𝜕

𝜕𝒙 1 ,
𝜕

𝜕𝒙 2 ,
𝜕

𝜕𝒙 3 .

𝒚(1)

𝒚(2)

𝒚(3)

=

𝜕𝒚(1)

𝜕𝒙 1

𝜕𝒚(1)

𝜕𝒙 2

𝜕𝒚(1)

𝜕𝒙 3

𝜕𝒚(3)

𝜕𝒙 3

  Jacobian; . is Kronecker product (also ⊙)

𝜕𝑌

𝜕𝒙
=

𝜕

𝜕𝒙 1 ,
𝜕

𝜕𝒙 2 ,
𝜕

𝜕𝒙 3 . 𝑌 =
𝜕

𝜕𝒙 1 𝑌
𝜕

𝜕𝒙 2 𝑌
𝜕

𝜕𝒙 3 𝑌



Backpropagation Background: Vector Calculus notations

𝜕𝑦

𝜕𝑋
=

𝜕

𝜕𝑋 1,1

𝜕

𝜕𝑋 1,2

𝜕

𝜕𝑋 2,1

𝜕

𝜕𝑋 2,2

. 𝑦 

𝜕𝒚

𝜕𝑋
=

𝜕

𝜕𝑋 1,1

𝜕

𝜕𝑋 1,2

𝜕

𝜕𝑋 2,1

𝜕

𝜕𝑋 2,2

. 𝒚 =

𝜕

𝜕𝑋 1,1

𝜕

𝜕𝑋 1,2

𝜕

𝜕𝑋 2,1

𝜕

𝜕𝑋 2,2

. 𝒚 1

𝜕

𝜕𝑋 1,1

𝜕

𝜕𝑋 1,2

𝜕

𝜕𝑋 2,1

𝜕

𝜕𝑋 2,2

. 𝒚 2

𝜕

𝜕𝑋 1,1

𝜕

𝜕𝑋 1,2

𝜕

𝜕𝑋 2,1

𝜕

𝜕𝑋 2,2

. 𝒚 3  

𝜕𝑌

𝜕𝑋
=

𝜕

𝜕𝑋 1,1

𝜕

𝜕𝑋 1,2

𝜕

𝜕𝑋 2,1

𝜕

𝜕𝑋 2,2

. 𝑌 =

𝜕

𝜕𝑋 1,1

𝜕

𝜕𝑋 1,2

𝜕

𝜕𝑋 2,1

𝜕

𝜕𝑋 2,2

𝑌 1,1 𝑌 1,2

𝑌 2,1 𝑌 2,2
=

𝜕𝑌(1,1)

𝜕𝑋 1,1

𝜕𝑌(1,1)

𝜕𝑋 1,2

𝜕𝑌(1,1)

𝜕𝑋 2,1

𝜕𝑌(1,1)

𝜕𝑋 2,2

𝜕𝑌(1,2)

𝜕𝑋 1,1

𝜕𝑌(1,2)

𝜕𝑋 1,2

𝜕𝑌(1,2)

𝜕𝑋 2,1

𝜕𝑌(1,2)

𝜕𝑋 2,2

…

𝜕𝑌(2,2)

𝜕𝑋 1,1

𝜕𝑌(2,2)

𝜕𝑋 1,2

𝜕𝑌(2,2)

𝜕𝑋 2,1

𝜕𝑌(2,2)

𝜕𝑋 2,2



Backpropagation and Gradient-Based Training

𝒉 = 𝑓(𝒛(1) = 𝑊(1)𝒙 + 𝒃(1))
ෝ𝒚 = 𝑊(2)𝒉 + 𝒃(2)

For pose regression:  𝐿 = −
1

𝑁
σ𝑖=1

𝑁 |ෝ𝒚𝑖 − 𝒚𝒊|2
2

Computing Gradients (Backprop):

• We compute 
𝜕𝐿

𝜕𝑊 2  , 
𝜕𝐿

𝜕𝑏 2  , 
𝜕𝐿

𝜕𝑊 1  , 
𝜕𝐿

𝜕𝑏(1) using chain rule

• For example: 
𝜕𝐿

𝜕𝑊 2 =
𝜕𝐿

𝜕ෝ𝒚

𝜕ෝ𝒚

𝜕𝑊(2) = 
𝜕𝐿

𝜕ෝ𝒚
 ℎ⊤

Gradient Descent Update: With learning rate 𝜂

𝑊(𝑙) ≔ 𝑊 𝑙 − 𝜂
𝜕𝐿

𝜕𝑊(𝑙),  𝒃
(𝑙) ≔ 𝒃 𝑙 − 𝜂

𝜕𝐿

𝜕𝒃(𝑙)

𝐿(W)

W

𝜕𝐿

𝜕𝑊

𝒙 𝒉
ෝ𝒚

𝑊3,4
1 𝑊4,2

2

𝑧(1)



𝒚 =
𝑦1

𝑦2
=

𝑤11ℎ1 + 𝑤12ℎ2 + 𝑤13ℎ3 + 𝑏1

𝑤21ℎ1 + 𝑤22ℎ2 + 𝑤23ℎ3 + 𝑏2

𝜕𝒚

𝜕𝑾
=

𝜕

𝜕𝑊 1,1

𝜕

𝜕𝑊 1,2

𝜕

𝜕𝑊 1,3

𝜕

𝜕𝑊 2,1

𝜕

𝜕𝑊 2,2

𝜕

𝜕𝑊 2,3

⊙ 𝑦𝑇 

𝜕

𝜕𝑊 1,1

𝜕

𝜕𝑊 1,2

𝜕

𝜕𝑊 1,3

𝜕

𝜕𝑊 2,1

𝜕

𝜕𝑊 2,2

𝜕

𝜕𝑊 2,3

𝑤11ℎ1 + 𝑤12ℎ2 + 𝑤13ℎ3 + 𝑏1

𝜕

𝜕𝑊 1,1

𝜕

𝜕𝑊 1,2

𝜕

𝜕𝑊 1,3

𝜕

𝜕𝑊 2,1

𝜕

𝜕𝑊 2,2

𝜕

𝜕𝑊 2,3

𝑤21ℎ1 + 𝑤22ℎ2 + 𝑤23ℎ3 + 𝑏2 .

ℎ1 ℎ2 ℎ3

0 0 0
.

0 0 0
ℎ1 ℎ2 ℎ3

 = 𝐼 ⊙ ℎ𝑇     



Vanishing gradient problem

Consider MLP with:

• Input 𝑥 ∈ ℝ𝑑

• 3 hidden layers, each with sigmoid.

• 1 output ො𝑦 ∈ ℝ for a regression or binary classification.

That is

1. 𝑧(1) = 𝑊(1)𝑥 + 𝑏(1) ∈ ℝ𝑚

2. 𝑎(1) = 𝜎(𝑧(1)) ∈ ℝ𝑚

3. 𝑧(𝑖) = 𝑊(𝑖)𝑎(𝑖−1) + 𝑏(𝑖) ∈ ℝ𝑚 , 𝑖 = 2,3,4

4. 𝑎(𝑖) = 𝜎 𝑧 𝑖 ∈ ℝ𝑚 , 𝑖 = 2,3

5. ො𝑦 = 𝜎(𝑧(4))  ∈ ℝ𝑚

Loss L =
1

2
ො𝑦 − 𝑦 2



As the number of layers increase gradient can vanish

𝜕𝐿

𝜕𝑧 4
=

𝜕𝐿

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑧(4)
= ො𝑦 − 𝑦

𝜕 ො𝑦

𝜕𝑧(4)
= ො𝑦 − 𝑦 ො𝑦(1 − ො𝑦)

𝜕𝐿

𝜕𝑎 3
=

𝜕𝐿

𝜕𝑧(4)

𝜕𝑧(4)

𝜕𝑎(3)
= ො𝑦 − 𝑦 ො𝑦 1 − ො𝑦 . 𝑊(4)

𝜕𝐿

𝜕𝑧 3
=

𝜕𝐿

𝜕𝑎(3)

𝜕𝑎(3)

𝜕𝑧(3)
= ො𝑦 − 𝑦 ො𝑦 1 − ො𝑦 . 𝑊(4) ⊙ 𝜎′(𝑧(3))

𝜕𝐿

𝜕𝑧 ℓ
=

𝜕𝐿

𝜕𝑧 ℓ+1
𝑊ℓ+1𝜎′ 𝑧 ℓ

If each 𝜎′ 𝑧 ℓ ≤ 0.25 the gradient vanishes

𝑧(1) = 𝑊(1)𝑥 + 𝑏(1)

𝑎(1) = 𝜎 𝑧 1

𝑧(2) = 𝑊(2)𝑎(1) + 𝑏(2)

𝑎(2) = 𝜎 𝑧 2

𝑧(3) = 𝑊(3)𝑎(2) + 𝑏(3)

𝑎(3) = 𝜎 𝑧 3

𝑧(4) = 𝑊(4)𝑎(3) + 𝑏(4)

ො𝑦 = 𝜎(𝑧(4))

𝐿 =
1

2
ො𝑦 − 𝑦 2

𝜎 𝑧 =
𝑒𝑧

1+𝑒𝑧    𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎 𝑧 )



Exploding gradient problem

Consider MLP with:

• Input 𝑥 ∈ ℝ𝑑

• 3 hidden layers, each with RELU.

• 1 output ො𝑦 ∈ ℝ for a regression or binary classification.

That is

1. 𝑧(1) = 𝑊(1)𝑥 + 𝑏(1) ∈ ℝ𝑚 = 𝛼𝐼𝑥 for simplicity 𝑏(𝑖) = 0 𝑊(𝑖) = 𝛼𝐼

2. 𝑎(1) = 𝑅𝑒𝐿𝑈 𝑧 1 = 𝛼𝑥 if 𝑎(1) is positive in each component

3. 𝑧(𝑖) = 𝛼𝐼𝑎(𝑖−1) = 𝛼𝑖𝑥, 𝑖 = 2,3,4

4. 𝑎(𝑖) = 𝑅𝑒𝐿𝑈 𝑧 𝑖 = 𝛼𝑖𝑥, 𝑖 = 2,3

5. ො𝑦 = 𝑅𝑒𝐿𝑈 𝑧 4 = 𝛼4𝑥

Loss L =
1

2
ො𝑦 − 𝑦 2



Exploding gradient continued

𝜕𝐿

𝜕𝑧 4
=

𝜕𝐿

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑧(4)
= 𝛼4𝑥 − 𝑦. 1

𝜕𝐿

𝜕𝑎 3
=

𝜕𝐿

𝜕𝑧(4)

𝜕𝑧(4)

𝜕𝑎(3)
= 𝛼4𝑥 − 𝑦. 1 𝛼𝐼

𝜕𝐿

𝜕𝑧 3
=

𝜕𝐿

𝜕𝑎(3)

𝜕𝑎(3)

𝜕𝑧(3)
= 𝛼4𝑥 − 𝑦. 1 𝛼. 1

𝜕𝐿

𝜕𝑎 2
=

𝜕𝐿

𝜕𝑧(3)

𝜕𝑧(3)

𝜕𝑎(2)
= 𝛼4𝑥 − 𝑦. 1 𝛼𝛼. 𝐼 = 𝛼2 𝛼4𝑥 − 𝑦. 1

… 
𝜕𝐿

𝜕𝑎 1
= 𝛼3 𝛼4𝑥 − 𝑦. 1

If 𝛼 ≫ 1 the factor 𝛼3 explodes in the gradient computation

Caution: Sigmoid activations clip the gradient and can lead to vanishing gradients

ReLU can make the gradients large

𝑧(1) = 𝑊(1)𝑥 + 𝑏(1) = 𝛼𝐼𝑥 

𝑎(1) = 𝑅𝑒𝐿𝑈 𝑧 1 = 𝛼𝑥

𝑧(𝑖) = 𝛼𝐼𝑎(𝑖−1)

𝑎(𝑖) = 𝑅𝑒𝐿𝑈 𝑧 𝑖

ො𝑦 = 𝑅𝑒𝐿𝑈 𝑧 4

𝐿 =
1

2
ො𝑦 − 𝑦 2



Further readings on NN architectures

MLP:  𝑥ℓ+1  =  𝜎(𝑊ℓ𝑥ℓ + 𝑏ℓ)

ResNets: 𝑥ℓ+1  = 𝑥ℓ +
1

𝐿
𝑈ℓ

𝑇𝜎 𝑉ℓ𝑥ℓ + 𝑏ℓ , 𝑈ℓ, 𝑉ℓ are the weight matrices

and L is the number of layers, can avoid issues with gradient collapse

Neural ODEs: As the number of layers approaches 𝐿 → ∞ ResNets can be 

seen as a discretization of 
𝑑𝑥𝑠

𝑑𝑠
 = 𝑈𝑠

𝑇𝜎 𝑉𝑠𝑥𝑠 + 𝑏𝑠  

He, Zhang, Ren, and Sun. Deep residual learning for image 

recognition. CVPR, 2016.

Chen, Rubanova, Bettencourt, and K Duvenaud. Neural 

ordinary differential equations. NeuRIPs, 2018.



Example NN training in Python: Setup

# Dataset: a circle N = 200 # samples

X = np.random.randn(N, 2) # shape: (N, 2) r = 1.0

Y = (X[:,0]**2 + X[:,1]**2 < r**2).astype(np.float32) shape: (N, 1) 0 or 1

# Define NN architecture

input_dim = 2 hidden_dim = 8 output_dim = 1 # binary classification

# Initialize NN: small random values for weights, and zeros for biases

W1 = 0.01 * np.random.randn(input_dim, hidden_dim) # shape: (2, 8)

b1 = np.zeros((1, hidden_dim)) # shape: (1, 8)

W2 = 0.01 * np.random.randn(hidden_dim, output_dim) # shape: (8, 1)

b2 = np.zeros((1, output_dim)) # shape: (1, 1)



def compute_loss(Y_pred, Y_true): # Cross-entropy loss: 𝐿 =  −
1

𝑁
 σ𝑖 𝑦𝑖log( ො𝑦𝑖)  + (1 − 𝑦𝑖)log(1 − ො𝑦𝑖) 

return -1/N*sum(Y_true*log(Y_pred+epsilon) + (1-Y_true)*log(1 - Y_pred+epsilon))

# Training loop

learning_rate = 0.05 num_iterations = 1000

for i in range(num_iterations):

 # Forward pass Layer 1: Z1 = XW1 + b1; Layer 2: Z2 = A1W2 + b2

 Z1 = np.dot(X, W1) + b1 # shape: (N, 8)

 A1 = relu(Z1) # shape: (N, 8)

 Z2 = np.dot(A1, W2) + b2 # shape: (N, 1)

 A2 = sigmoid(Z2) # Y_pred

 loss = compute_loss(A2, Y)

 # Backward pass; For cross-entropy and sigmoid, dL/dZ2 = A2 - Y

 dZ2 = A2 - Y # shape: (N, 1)

 dW2 = np.dot(A1.T, dZ2) # shape: (8, 1)

 dB2 = np.sum(dZ2, axis=0, keepdims=True) # shape: (1,1)

 dA1 = np.dot(dZ2, W2.T) # shape: (N,8)

 dZ1 = dA1 * relu_derivative(Z1) # shape: (N,8)

 dW1 = np.dot(X.T, dZ1) # shape: (2,8)

 dB1 = np.sum(dZ1, axis=0, keepdims=True) # shape: (1,8)

# Update parameters
W1 -= learning_rate * dW1
b1 -= learning_rate * dB1
W2 -= learning_rate * dW2
b2 -= learning_rate * dB2



Example in Pytorch
class TwoLayerNet(nn.Module):

 def __init__(self, input_dim=2, hidden_dim=8, output_dim=1):

    super(TwoLayerNet, self).__init__()

      self.layer1 = nn.Linear(input_dim, hidden_dim) # W1, b1

      self.layer2 = nn.Linear(hidden_dim, output_dim) # W2, b2

  

   def forward(self, x): # x shape: (N, 2)

    z1 = self.layer1(x)     a1 = self.relu(z1)    z2 = self.layer2(a1)

    y_hat = self.sigmoid(z2)

    return y_hat

# 2layer NN Binary Cross Entropy ; SGD 

model = TwoLayerNet() criterion = nn.BCELoss()  optimizer = optim.SGD(…)

for i in range(num_iterations): # Training loop

  optimizer.zero_grad()  # 1. Zero the parameter gradients

  y_pred = model(X_torch)  # 2. Forward pass

  loss = criterion(y_pred, Y_torch) # 3. Compute loss

  loss.backward()   # 4. Backward pass (compute gradients)

  optimizer.step()   # 5. Update parameters



Bias-variance tradeoff

Training loss/ error of learning algorithms has two main components:

• Bias: error due to simplifying model assumptions

• Variance: error due to randomness of training set

Bias-variance tradeoff can be tuned with hyperparameters during the validation phase

• E.g. hyperparameters: number of layers, activation type, network architecture, etc.

High bias, low variance Low bias, high variance

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html


Under and overfitting
• Underfitting: training and test error are both high

• Model does an equally poor job on the training and the test set

• The model is too “simple” to represent the data or the model is not trained well

• Overfitting: Training error is low but test error is high

• Model fits irrelevant characteristics (noise) in the training data

• Model is too complex or amount of training data is insufficient

Underfitting OverfittingGood tradeoff

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html


Best practices for training classifiers

Goal: obtain a classifier with good generalization or performance 
on never before seen data

1. Learn parameters on the training set

2. Tune hyperparameters on the held out validation set

3. Evaluate performance on the test set

Crucial: do not peek at the test set when iterating steps 1 and 2!
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