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Perception in an autonomous system

Perception converts sensor signals to state  #
estimates for decision making and control

Physics
Actuators Sensors
Examples: Declsion
) ] ] & Perception
* Type or Class of lead vehicle, traffic sign Testing and verification AL

* Pose position of ego on map, relative to lanes,
relative to lead vehicle, attitude of drone relative
to marker

* Speed, angular speed of ego and others
* Acceleration, intention of the pedestrian
Fundamental questions

*  What can be estimated? Observability

What resources (bits) are needed for achieving
certain quality of estimation?

e How to build estimators?



Recognizing object classes from camera
images: Classification




Goal: Learn/build a function that predicts the object in an image

Apply a prediction function to a representation of the image to
get the desired output:

f@&) = “apple”
fl&d) = “tomato”
fE&) = “cow”



Statistical learning framework: Train classifier from training data

y = f(x)
RN

output prediction feature
function representation

Training: given a training set of labeled examples
{(x1,¥1), ---, (Xp,¥N) ), €stimate the prediction function f by minimizing the prediction
error on the training set

Validation: tune (hyper)parameters in f, learning rate
Testing: apply f to a never before seen test data x and output predicted value y = f(x)



Universal approximators

Outline

Linear classifiers

Neural networks
Forward pass

Gradient

I

Backpropagation;

Exploding and imploding

descent
gradients

Best practices
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Linear classifiers

\
\
. . ] H ®
Images or feature representations of images x € | ®
Rd . “ .
\ e
A constant vector w € R and a scalar H ®
b € R define a binary classifier H “
\
[] \ ¢
1
The classification task is to find the weight and the 1
bias (w, b) that define a for the
given data set

The separators are also called

Read support vector machines (SVM)
https://greitemann.dev/svm-demo
SVM classifiers try to find a linear separator that
maximizes the distance of the separator to the
points

Read about SIFT, HOG, bag of visual
words to learn about image features.



https://greitemann.dev/svm-demo
https://greitemann.dev/svm-demo
https://greitemann.dev/svm-demo
https://publish.illinois.edu/safe-autonomy/files/2020/09/Fall20-Lecture5_recognition.pdf
https://publish.illinois.edu/safe-autonomy/files/2020/09/Fall20-Lecture5_recognition.pdf

Visualizing linear classifiers with many classes

stretch pixels into single column
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%4 2 b flzs W, b)

£L;
plane car bird cat deer dog frog horse ship truck

Source: Andrej Karpathy, http://cs231n.qgithub.io/linear-classify/



http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/

Limitations of Linear Classifiers

Input: A feature vector x € R%.

Weights and bias: w € R%, b € R.

Prediction (binary classification example): y = wix + b
Limitations: The data may not be

Linear separators decision boundaries may not capture
nonlinear relationships between classes |
N
]
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Nonlinearity via Neural Networks

A neural network is a function fyy: R > R¥ defined as a composition
of layers of linear and nonlinear transformations.

A single layer performs a linear transformation followed by a nonlinear
activation

w.x+b€eER
W.x+beR™ W e Rm*4 b e R™
y=g(Wx+ b) g € R™ - R™
; 1-Layer Perceptron
g: e.g. ReLU(z) = max(z,0),sigmoid(z) = c

1+eZ



Activation functions and their derivatives

Activation Functions Derivatives
51 — RelU 1.0 — ReLU’
—— Sigmoid —— Sigmoid'
4 1 0.8 -
31 0.6 -
x x

2 1 0.4 -

1 0.2 1 /\
0 0.0 +

TS s TS
ReLU(z) = max(z,0) dRe;g(Z) = {0,1}

o(z) == 0'(2) = 0(2)(1 - 0(2))

1+eZ




Nonlinearity via Neural Networks

A neural network is a function fyy: R* —» R¥ defined as a composition
. . . 2-Layer Network: d=3, m=4, k=2
of layers of linear and nonlinear transformations.

2-layer network with one hidden layer and input x € R¢

« h=g(W®x + pW) (hidden layer)
« y=W®h + b (output layer)

w® e R4 w2 e RK*™m for m of are the Multi-Layer
b(l) e R™ b(z) e R¥ are the Perceptron (MLP)
Jui e.g. ReLU(z) = max(z,0), sigmoid(z) = c

1+e?
Example k=2 for lane boundary parameters, k=6 for pose components



1.00

Universal Approximation Theorem [Cybenko G. 1989]

=== —— True function

: === Step Approx. with 5 steps
: —-- Step Approx. with 20 steps
1

Any continuous function f on a compact domain can be
approximated to arbitrary precision with a sufficiently
large (but finite) single-hidden-layer feedforward
network with a suitable activation function. _

0.75 1

0.50 1

0.25 1

* fcanbe approximated arbitrarily by a sum of
* Exercise. A tower function can be approximated by a %
network with 1 layer (2 ReLUs~= | ) o A
 Sum of towers can be created by adding more I da o o
elements in the hidden layer
Neural networks are expressive enough to infer complex b=-300
state estimates from raw pixels @—O
Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal w=1000

function." Mathematics of Control, Signals and Systems, 2(4), 303—-314.
https://www.youtube.com/watch?v=ljgkc7OLenl y=ReLU(1 OOOX'300)

1

flw



Neural Network Forward Propagation

For a given input x;:
« Compute hidden layer pre-activation: z(1) = W®x + pD).
*  Apply activation: h = f(z(D).
« Compute output layer: y; = W& h + b,

This results in a prediction y; for input x;, e.g.:

*  For lane estimation: § € R¥*Wif predicting per-pixel

segmentation, or y € RP if predicting lane embedding.

 For 6DOF pose: y € RS, representing (x,y,z, a, 8,¥) or other
parameterization of rotation and translation.

2-Layer Network: d=3, m=4, k=2




Backpropagation and Gradient-Based Training

: A scalar function L(W, {y;, x;, ¥;}) that measures how
well a prediction y; matches the Yi.

Requires knowledge of ground truth/labels:

For lane segmentation (classification per pixel)
suitable when predictions are probabilities y; € {0,1} y; € [0,1]

LW, {yux,yi}) = _%Zli\l:l[yi log(y:) + (1 — y)log(1 — 9,)],

For pose regression, L2 distance: L = —%Zﬁvzl 19 — yil5
L(W)

: algorithm/process of minimizing loss L(W) by changing the
weights (W) and the biases (b) of the neural network (f)

E.g.

dL
aw

v







Backpropagation Background: Vector Calculus refresher

Differentiating scalars, vectors, and matrices:

0 d

_ m)". 9 _
y =0, ... y™) 5 =

oy ay (LD
dy oy _| 9% |ar _ | ox
ax’ ox ay<n> ‘ox oy @D
Ax dox
dy @ _( a9 2 )
ox ox Y T \0x®9x@ " 9x®) Y
y(l)
oy_o (o 0 o\ |lol_
ax  Ox Y = (6x(1) *ox(2)’ ax(?’)) (Y o
y(3)
ay

d
(ax(l) 7 9x(2)’ c’)x(3))

Gradient operator V

Element-wise differentiation of vectors and matrices

Gradient of y; row vector of partials

_6y(1) ay(l) ay(l)_
ax(V  9x(2  gx(3)
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Jacobian; . is Kronecker product (also ©)



Backpropagation Background: Vector Calculus notations

] d
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Backpropagation and Gradient-Based Trainin 2tever Network: d=3, m=4, k=2

h = f(z(l) = W(l)x + b(l))
y=W®h+ p®

. 1 -
For pose regression: L = —NZ{-V:l ¥: — yil5

Computing Gradients (Backprop):
oL L oL
w®@ 7 ap2 7 gD 7 5p(D)

oL oL 9y (6L) T
L] . T — el —
For example: —~= 25w ® ~\ a3 h

Gradient Descent Update: With learning rate n

)’ )
oW UPTI0

* We compute 5

W = p® = p®

using chain rule

x 71

h

(D) 4,2
Ws,
oL
oW
L(W)
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Vanishing gradient problem

Consider MLP with:
* Inputx € R?
* 3 hidden layers, each with sigmoid.

* 1outputy € R for a regression or binary classification.
That is

1.z =wDx 4+ pM e g

2.aM =g(zM) eR™

3.z0 =Ww®al=D 4 pO € R™,i = 2,3,4
4.a9 =g(z¥9) er™i=23
59=0(z®) e R

Loss L = %(37 — y)?



As the number of layers increase gradient can vanish

@) = @Dy 4 p@D
oL AL 3 99 z- =W='x+b

3, —399,m ~ I~ N wm=0-»52-79) a® = g(zV)
(Z9L )OIL dz® z@ =wWw@Daq 4 p@
520 = 5,0 5 = T =YL= WD a® = o(22)
dL L da® 723 = w®qa@ 4 p®3
323 9a® 9z, P —MYA—=P.WH O o'(z®) a® = g(z®)
aL aL Z(4') — W(4)a(3) + b(4-)
— W€+1O.I(Z(1,”)) ‘ (4)
dz®  §zUE+D § = a(z®)
L 5 2
L=7 -

eeeeeeeeeee

If each O"(Z({))) < (.25 the gradient vanishes

o(z) = e’ 0'(z) =a(2)(1 —0(2))

1+eZ



Exploding gradient problem

Consider MLP with:
* Inputx € R?
e 3 hidden layers, each with RELU.

* 1outputy € R for a regression or binary classification.
That is

1.z =Wy 4+ pM € R™ = alx for simplicity b = 0 W® = g
2.aW = ReLU(zW) = axif a® is positive in each component
3.z =alaV = a'x,i =234

4 a® = ReLU(Z(i)) = a'x,i=23

5. 9 = ReLU(z™) = a*x

Loss L = %()7 — y)?



Exploding gradient continued

oL AL 99
9z8 ~ 099z®
oL oL 0z™

9a®  9z® 946
oL oL da®

923 9a® 973
oL L 9z®

3a® ~ 923 9a®@

oL
da@

=a'x —y.1

= (a*x —y.Dal
= (a*x —y.Da.1

= (a*x —y.Daa.l = a?(a*x —y.1)

= a3(a*x —y.1)

If @ > 1 the factor a3 explodes in the gradient computation

z® =w®x + pD = qix
a® = ReLU(zV) = ax
z® = qla(-V

a® = ReLU(Z(i))

$ = ReLU(z¥)

1
L==(9—1v)2
Z(y y)

Caution: Sigmoid activations clip the gradient and can lead to vanishing gradients

ReLU can make the gradients large



Further readings on NN architectures
MLP: Xpy1 = O'(W{)Xg + b{))
ResNets: xp,1 = xp + % U;o(Voxp + by), Uy, V, are the weight matrices

and L is the number of layers, can avoid issues with gradient collapse
Neural ODEs: As the number of layers approaches L — oo ResNets can be

. . d
seen as a discretization off = Ulo(V,x, + by)

He, Zhang, Ren, and Sun. Deep residual learning for image
recognition. CVPR, 2016.

Chen, Rubanova, Bettencourt, and K Duvenaud. Neural
ordinary differential equations. NeuRIPs, 2018.



Example NN training in Python: Setup

# Dataset: a circle N = 200 # samples

X = np.random.randn(N, 2) # shape: (N, 2) r=1.0
Y = (X[:,0]**2 + X[:,1]**2 < r**2).astype(np.float32) shape: (N, 1) O or 1

# Define NN architecture

input_dim = 2 hidden_dim = 8 output_dim =1 # binary classification
# Initialize NN: small random values for weights, and zeros for biases

W1 =0.01 * np.random.randn(input_dim, hidden_dim) # shape: (2, 8)
bl = np.zeros((1, hidden_dim)) # shape: (1, 8)

W2 =0.01 * np.random.randn(hidden_dim, output_dim) # shape: (8, 1)
b2 = np.zeros((1, output_dim)) # shape: (1, 1)



def compute_loss(Y_pred, Y_true): # Cross-entropy loss: L = —% Y vilog(¥) + (1 —y)log(1 — ;)

return -1/N*sum(Y_true*log(Y_pred+epsilon) + (1-Y_true)*log(1 - Y_pred+epsilon))

# Training loop
learning_rate = 0.05 num_iterations = 1000
foriin range(num_iterations):
# Forward pass Layer 1: Z1 = XW1 + bl; Layer 2: Z2 = AIW2 + b2
Z1 = np.dot(X, W1) + bl # shape: (N, 8)
A1l =relu(Z1) # shape: (N, 8)
Z2 = np.dot(A1, W2) + b2 # shape: (N, 1)
A2 =sigmoid(Z2) #Y_pred
loss = compute_loss(A2, Y)

# Backward pass; For cross-entropy and sigmoid, dL/dZ2 = A2 -Y
dZ2 = A2 -Y #shape: (N, 1)

dW2 = np.dot(A1.T, dZ2) # shape: (8, 1)

dB2 = np.sum(dZ2, axis=0, keepdims=True) # shape: (1,1)

dAl = np.dot(dZ2, W2.T) # shape: (N,8)

dZ1 = dA1 * relu_derivative(Z1) # shape: (N,8)

dW1 = np.dot(X.T, dZ1) # shape: (2,8)

dB1 = np.sum(dZ1, axis=0, keepdims=True) # shape: (1,8)

# Update parameters

W1 -=learning_rate * dW1
bl -=learning_rate * dB1
W2 -=learning_rate * dW2
b2 -= learning_rate * dB2



Example in Pytorch

class TwolayerNet(nn.Module):
def __init__(self, input_dim=2, hidden_dim=8, output_dim=1):
super(TwolayerNet, self). _init_ ()

self.layerl = nn.Linear(input_dim, hidden_dim) # W1, b1l
self.layer2 = nn.Linear(hidden_dim, output_dim) # W2, b2

def forward(self, x): # x shape: (N, 2)

z1=selflayerl(x) al =self.relu(zl) z2=self.layer2(al)
y_hat = self.sigmoid(z2)
returny_hat

# 2layer NN Binary Cross Entropy ; SGD

model = TwolayerNet() criterion = nn.BCELoss() optimizer = optim.SGD(...)

foriin range(num_iterations): # Training loop
optimizer.zero_grad() # 1. Zero the parameter gradients
y_pred = model(X_torch) # 2. Forward pass
loss = criterion(y_pred, Y_torch) # 3. Compute loss

loss.backward() # 4. Backward pass (compute gradients)

optimizer.step() #5. Update parameters



Bias-variance tradeoff

Training loss/ error of learning algorithms has two main components:
 Bias: error due to simplifying model assumptions
* Variance: error due to randomness of training set

Bias-variance tradeoff can be tuned with hyperparameters during the validation phase

* E.g. hyperparameters: number of layers, activation type, network architecture, etc.

High bias, low variance

Low bias, high variance
X O 3

Figure source


http://www.holehouse.org/mlclass/07_Regularization.html

Under and overfitting
* Underfitting: training and test error are both high

e Model does an equally poor job on the training and the test set
e The model is too “simple” to represent the data or the model is not trained well

e Overfitting: Training error is low but test error is high

* Model fits irrelevant characteristics (noise) in the training data
e Model is too complex or amount of training data is insufficient

Underfitting Good tradeoff Overfitting

Figure source


http://www.holehouse.org/mlclass/07_Regularization.html

Best practices for training classifiers

Goal: obtain a classifier with good generalization or performance
on never before seen data

1. Learn parameters on the training set
2. Tune hyperparameters on the held out validation set
3. Evaluate performance on the test set

Crucial: do not peek at the test set when iterating steps 1 and 2!

Training
Data

Held-Out
Data

Test
Data
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