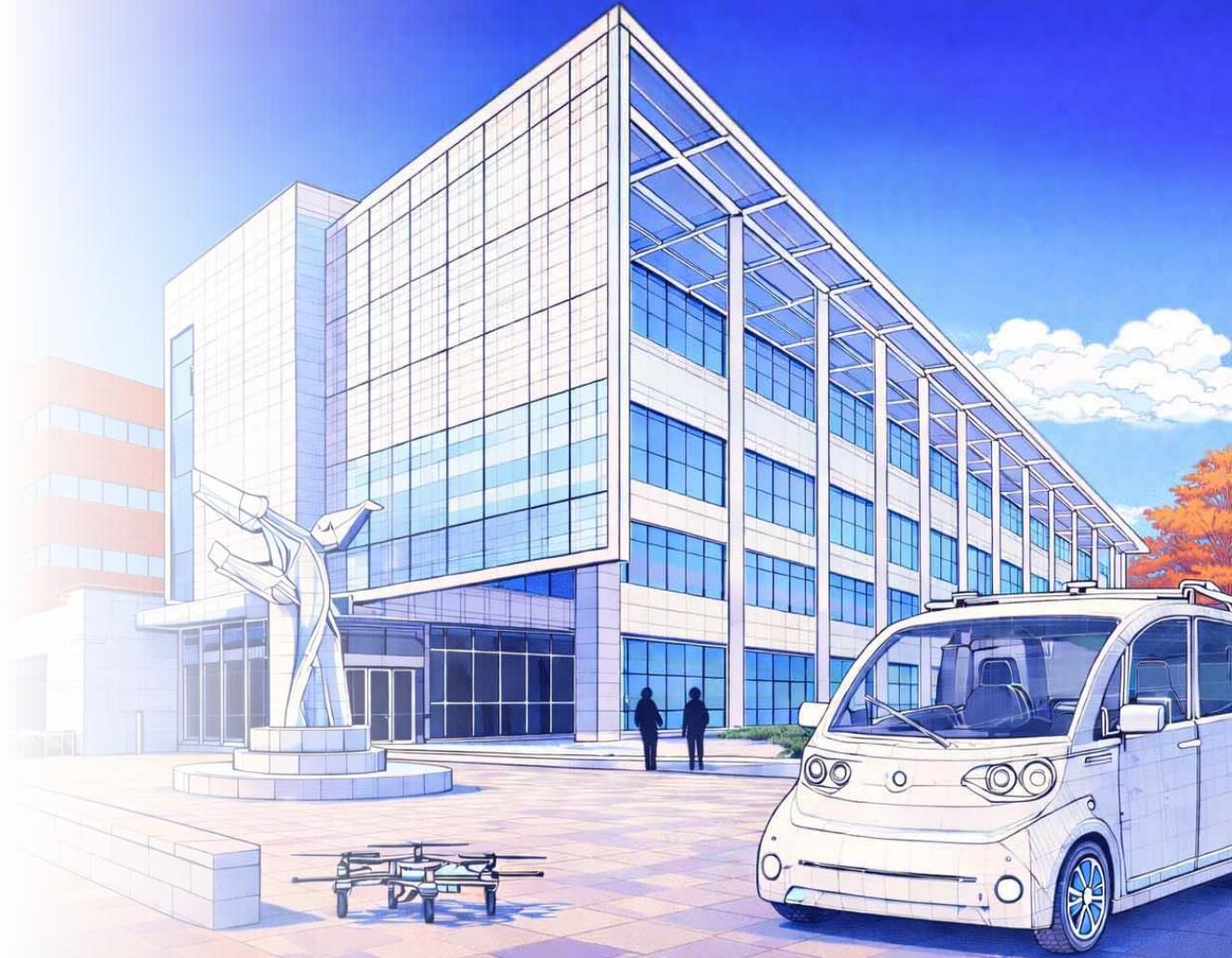


# ECE 484 Lecture 4 Perception: Neural Networks

Sayan Mitra



# Perception in an autonomous system

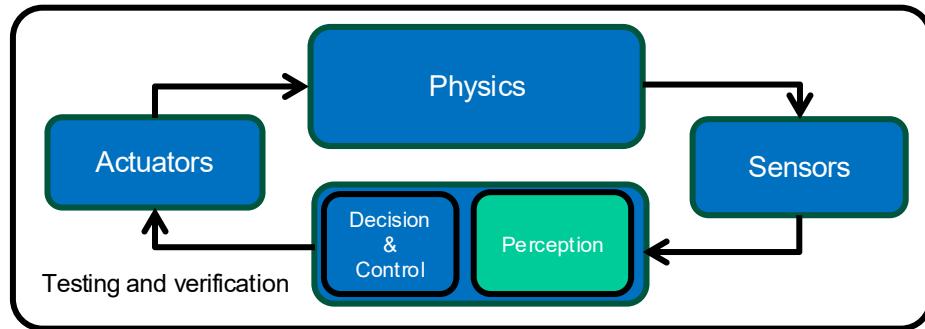
Perception converts sensor signals to **state estimates** for decision making and control

Examples:

- **Type** or **Class** of lead vehicle, traffic sign
- **Pose** position of ego on map, relative to lanes, relative to lead vehicle, attitude of drone relative to marker
- **Speed**, angular speed of ego and others
- Acceleration, intention of the pedestrian

Fundamental questions

- What can be estimated? Observability
- What resources (bits) are needed for achieving certain quality of estimation?
- How to build estimators?



# Recognizing object classes from camera images: Classification



# Goal: Learn/build a function that predicts the object in an image

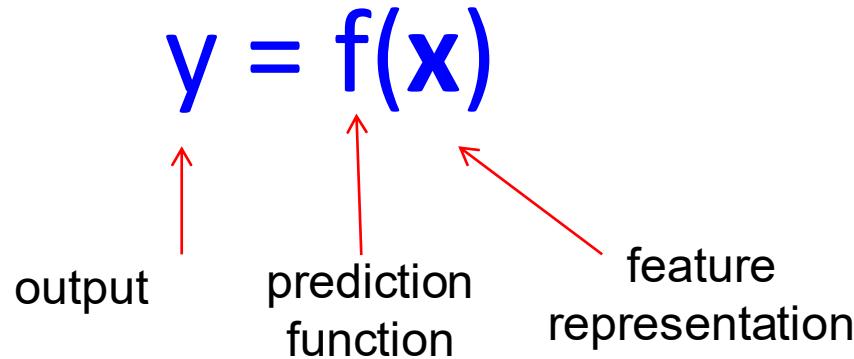
Apply a prediction function to a **representation** of the image to get the desired output:

$$f(\text{apple}) = \text{“apple”}$$

$$f(\text{tomato}) = \text{“tomato”}$$

$$f(\text{cow}) = \text{“cow”}$$

# Statistical learning framework: Train classifier from training data



**Training:** given a *training set* of **labeled** examples

$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ , estimate the prediction function  $f$  by minimizing the prediction error on the training set

**Validation:** tune (hyper)parameters in  $f$ , learning rate

**Testing:** apply  $f$  to a never before seen *test data*  $\mathbf{x}$  and output predicted value  $y = f(\mathbf{x})$

# Outline

Linear classifiers

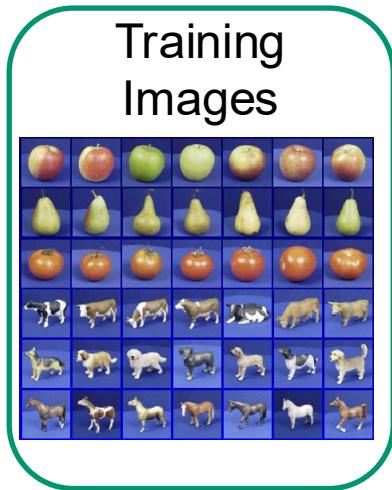
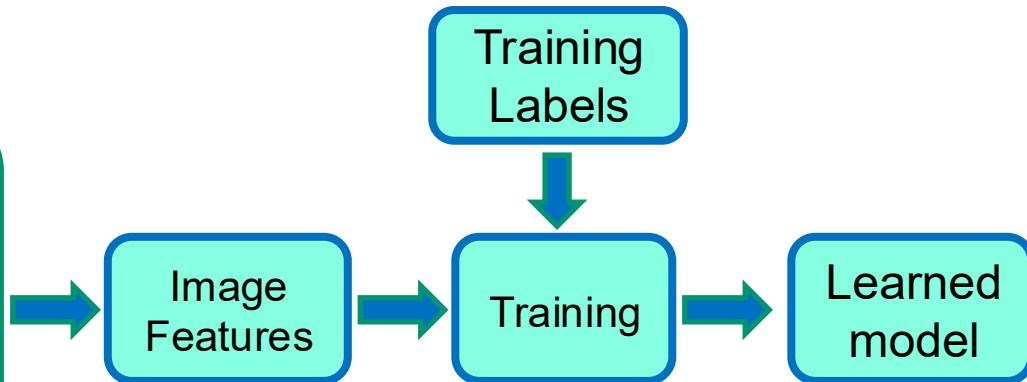
Neural networks

- Universal approximators
- Forward pass
- Backpropagation; Gradient descent
- Exploding and imploding gradients

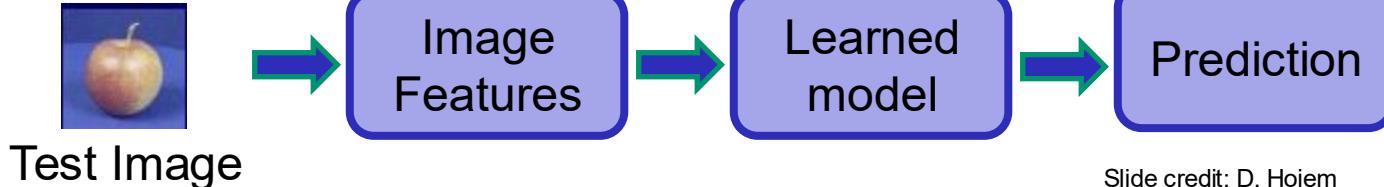
Best practices



## Training



## Testing



Slide credit: D. Hoiem

# Linear classifiers

Images or feature representations of images  $x \in \mathbb{R}^d$

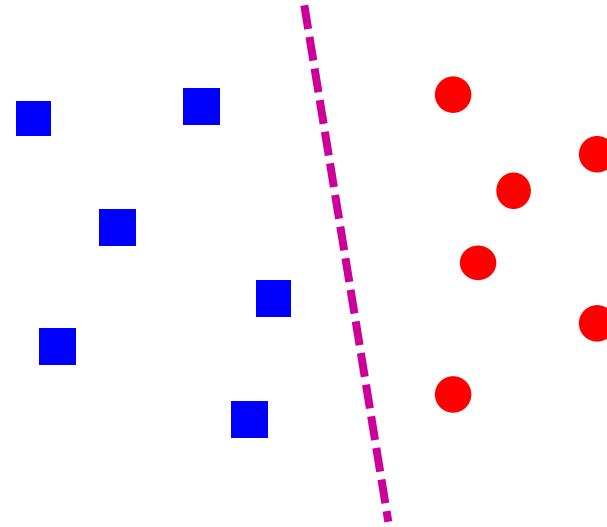
A constant **weight** vector  $w \in \mathbb{R}^d$  and a scalar **bias**  $b \in \mathbb{R}$  define a binary classifier

$$f(x) = \text{sgn}(w \cdot x + b)$$

The classification task is to find the weight and the bias  $(w, b)$  that define a **linear separator** for the given data set

The separators are also called **decision boundaries**

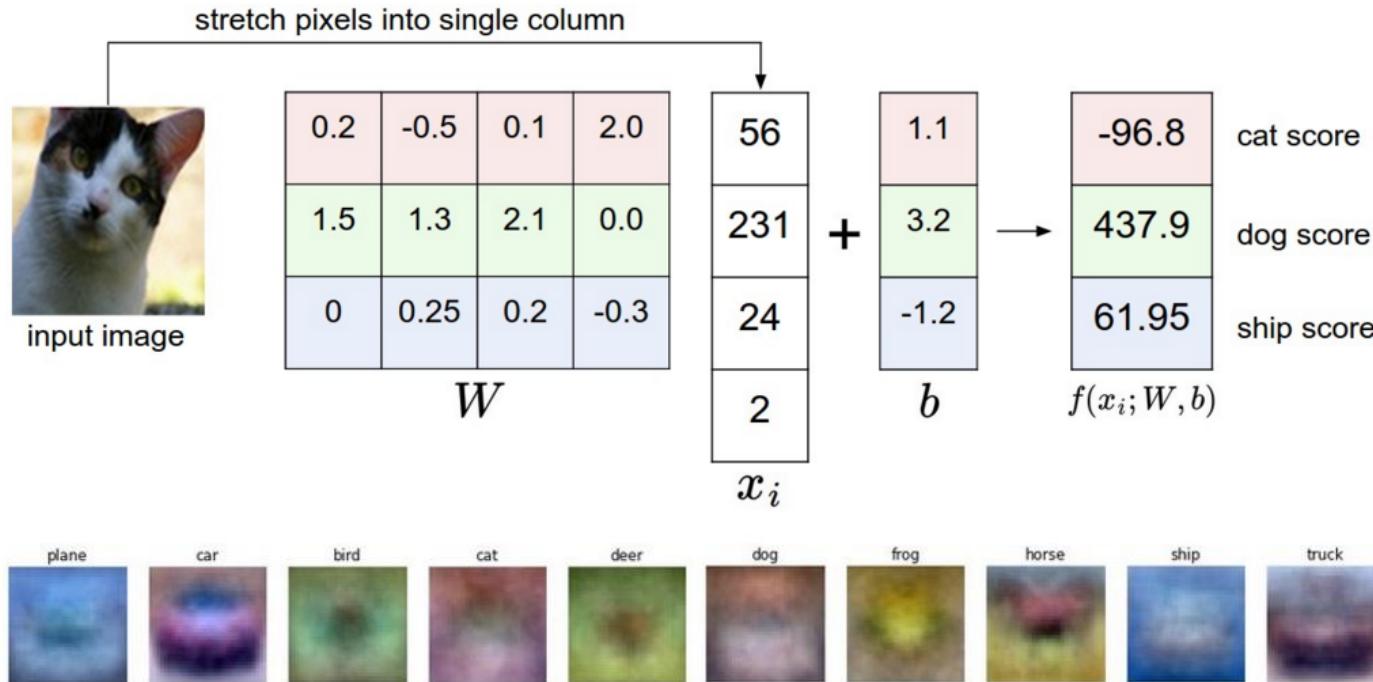
SVM classifiers try to find a linear separator that maximizes the distance of the separator to the points



Read support vector machines (SVM)  
<https://greitemann.dev/svm-demo>

Read about SIFT, HOG, [bag of visual words](#) to learn about image features.

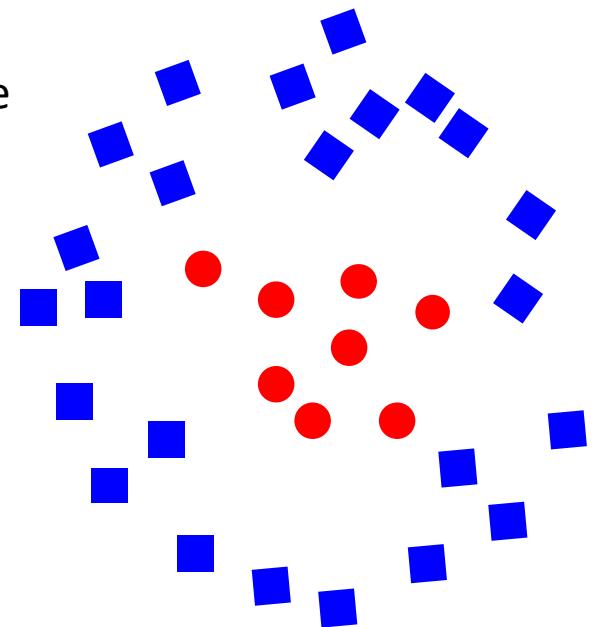
# Visualizing linear classifiers with many classes



Source: Andrej Karpathy, <http://cs231n.github.io/linear-classify/>

# Limitations of Linear Classifiers

- Input: A feature vector  $x \in \mathbb{R}^d$ .
- Weights and bias:  $w \in \mathbb{R}^d$ ,  $b \in \mathbb{R}$ .
- Prediction (binary classification example):  $\hat{y} = w^T x + b$
- Limitations: The data may not be **linearly separable**
- Linear separators decision boundaries may not capture nonlinear relationships between classes



# Nonlinearity via Neural Networks

A **neural network** is a function  $f_{NN}: \mathbb{R}^d \rightarrow \mathbb{R}^k$  defined as a composition of layers of linear and nonlinear transformations.

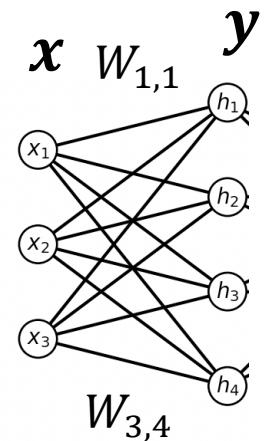
A single layer performs a linear transformation followed by a nonlinear activation

$$w \cdot \mathbf{x} + b \in \mathbb{R}$$

$$W \cdot \mathbf{x} + \mathbf{b} \in \mathbb{R}^m \quad \text{weight matrix } W \in \mathbb{R}^{m \times d} \text{ bias vector } \mathbf{b} \in \mathbb{R}^m$$

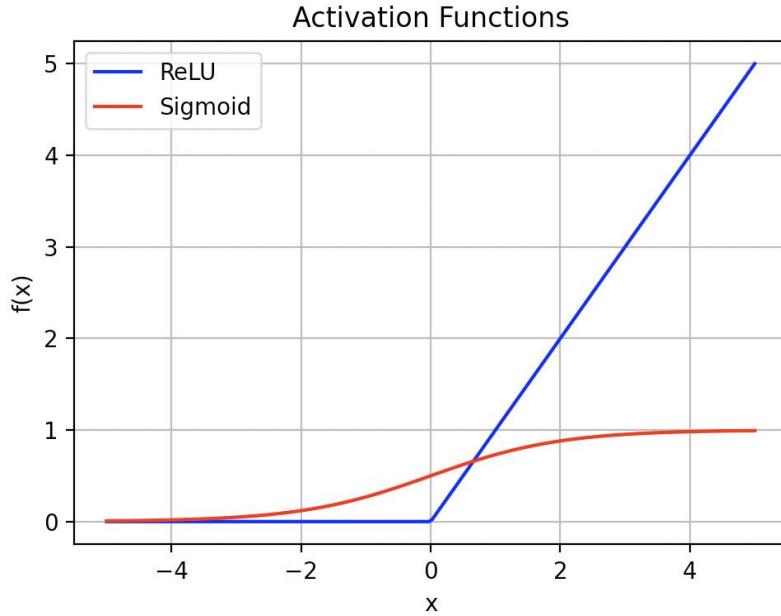
$$\mathbf{y} = g(W\mathbf{x} + \mathbf{b}) \quad \text{nonlinear activation } g \in \mathbb{R}^m \rightarrow \mathbb{R}^m$$

$$g: \text{activation function e.g. } \text{ReLU}(z) = \max(z, 0), \text{sigmoid}(z) = \frac{e^z}{1+e^z}$$



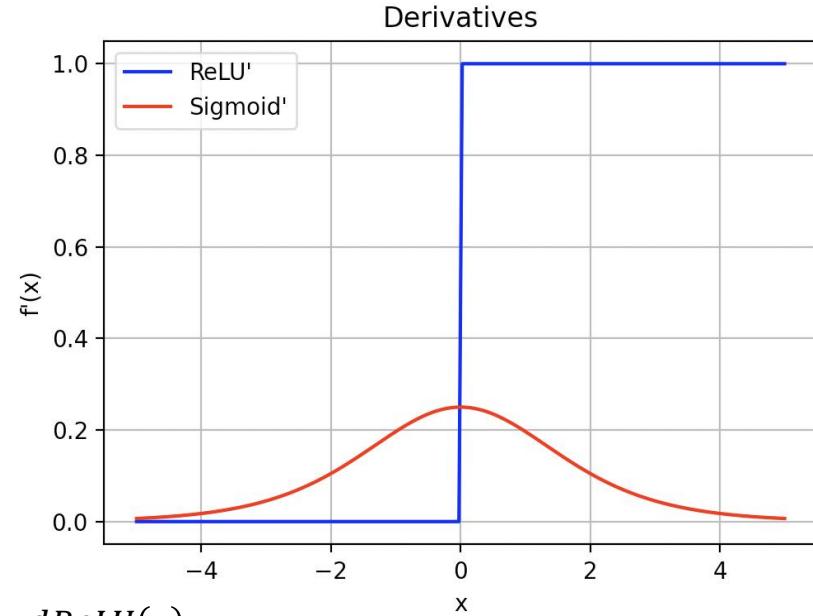
1-Layer Perceptron

# Activation functions and their derivatives



$$ReLU(z) = \max(z, 0)$$

$$\sigma(z) = \frac{e^z}{1+e^z}$$



$$\frac{dReLU(z)}{dz} = \{0,1\}$$

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

# Nonlinearity via Neural Networks

A **neural network** is a function  $f_{NN}: \mathbb{R}^d \rightarrow \mathbb{R}^k$  defined as a composition of layers of linear and nonlinear transformations.

2-layer network with one hidden layer and input  $x \in \mathbb{R}^d$

- $\mathbf{h} = g(W^{(1)}x + \mathbf{b}^{(1)})$  (hidden layer)
- $\hat{\mathbf{y}} = W^{(2)}\mathbf{h} + \mathbf{b}^{(2)}$  (output layer)

$$\hat{\mathbf{y}} = W^{(2)}g(W^{(1)}x + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)}$$

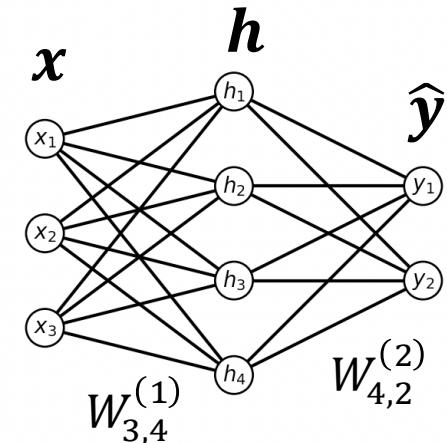
$W^{(1)} \in \mathbb{R}^{m \times d}$   $W^{(2)} \in \mathbb{R}^{k \times m}$ , for  $m$  of **hidden units** are the **weights**

$\mathbf{b}^{(1)} \in \mathbb{R}^m$   $\mathbf{b}^{(2)} \in \mathbb{R}^k$  are the **biases**

$g$ : **activation function** e.g.  $ReLU(z) = \max(z, 0)$ ,  $sigmoid(z) = \frac{e^z}{1+e^z}$

Example  $k=2$  for lane boundary parameters,  $k=6$  for pose components

2-Layer Network:  $d=3$ ,  $m=4$ ,  $k=2$



Multi-Layer  
Perceptron (MLP)

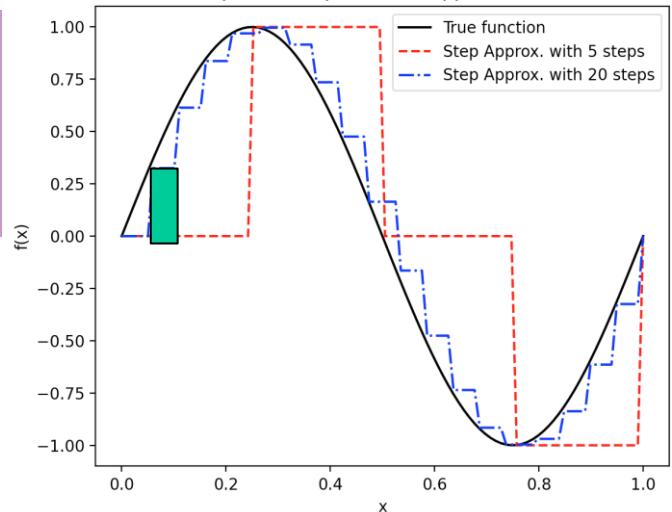
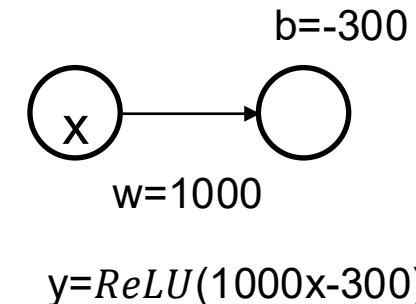
# Universal Approximation Theorem [Cybenko, G. 1989]

Any continuous function  $f$  on a compact domain can be approximated to arbitrary precision with a sufficiently large (but finite) single-hidden-layer feedforward network with a suitable activation function.

- $f$  can be approximated arbitrarily by a sum of **towers**
- **Exercise.** A tower function can be approximated by a network with 1 layer (2 ReLUs  $\approx$   $| \cdot |$ )
- Sum of towers can be created by adding more elements in the hidden layer

Neural networks are expressive enough to infer complex state estimates from raw pixels

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal function." *Mathematics of Control, Signals and Systems*, 2(4), 303–314.  
<https://www.youtube.com/watch?v=ljqkc7OLenI>



# Neural Network Forward Propagation

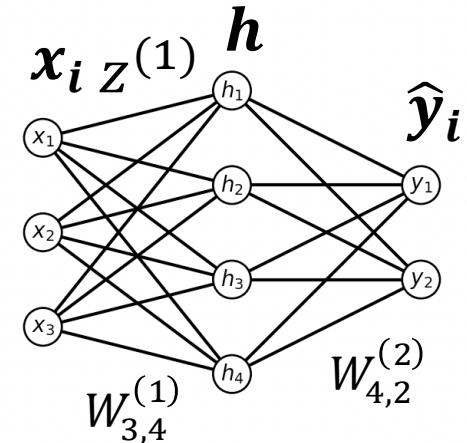
For a given input  $x_i$ :

- Compute hidden layer **pre-activation**:  $\mathbf{z}^{(1)} = W^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$ .
- Apply activation:  $\mathbf{h} = f(\mathbf{z}^{(1)})$ .
- Compute output layer:  $\hat{\mathbf{y}}_i = W^{(2)}\mathbf{h} + \mathbf{b}^{(2)}$ .

This results in a prediction  $\hat{\mathbf{y}}_i$  for input  $x_i$ , e.g.:

- For lane estimation:  $\hat{\mathbf{y}} \in \mathbb{R}^{H \times W}$  if predicting per-pixel segmentation, *or*  $\hat{\mathbf{y}} \in \mathbb{R}^p$  if predicting lane **embedding**.
- For 6DOF pose:  $\hat{\mathbf{y}} \in \mathbb{R}^6$ , representing  $(x, y, z, \alpha, \beta, \gamma)$  or other parameterization of rotation and translation.

2-Layer Network:  $d=3$ ,  $m=4$ ,  $k=2$



# Backpropagation and Gradient-Based Training

**Loss function:** A scalar function  $L(W, \{y_i, x_i, \hat{y}_i\})$  that measures how well a prediction  $\hat{y}_i$  matches the **ground truth**  $y_i$ .

Requires knowledge of ground truth/labels: **supervised learning**

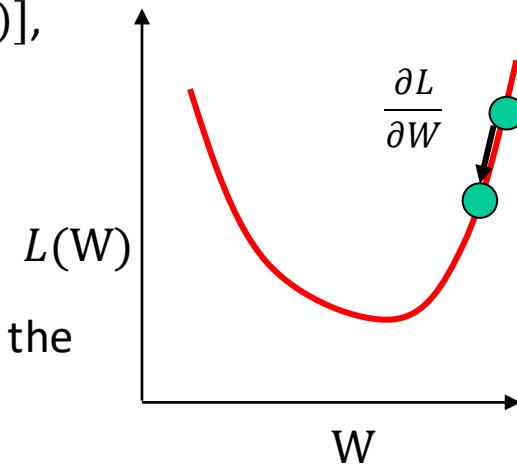
For lane segmentation (classification per pixel) **cross-entropy loss**  
suitable when predictions are probabilities  $y_i \in \{0,1\}$   $\hat{y}_i \in [0,1]$

$$L(W, \{y_i, x_i, \hat{y}_i\}) = -\frac{1}{N} \sum_{i=1}^N [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)],$$

For pose regression, L2 distance:  $L = -\frac{1}{N} \sum_{i=1}^N \|\hat{y}_i - y_i\|_2^2$

**Training:** algorithm/process of minimizing loss  $L(W)$  by changing the weights ( $W$ ) and the biases ( $b$ ) of the neural network ( $f$ )

E.g. **gradient descent with back propagation**





# Backpropagation Background: Vector Calculus refresher

**Differentiating scalars, vectors, and matrices:**

$$\mathbf{y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)})^T; \frac{\partial}{\partial \mathbf{x}} = \left( \frac{\partial}{\partial \mathbf{x}^{(1)}}, \frac{\partial}{\partial \mathbf{x}^{(2)}}, \frac{\partial}{\partial \mathbf{x}^{(3)}} \right)$$

Gradient operator  $\nabla$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}, \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}^{(1)}}{\partial \mathbf{x}} \\ \cdots \\ \frac{\partial \mathbf{y}^{(n)}}{\partial \mathbf{x}} \end{bmatrix}, \frac{\partial Y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial Y^{(1,1)}}{\partial \mathbf{x}} & \cdots \\ \cdots & \frac{\partial Y^{(i,j)}}{\partial \mathbf{x}} \end{bmatrix}$$

Element-wise differentiation of vectors and matrices

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \cdot \mathbf{y} = \left( \frac{\partial}{\partial \mathbf{x}^{(1)}}, \frac{\partial}{\partial \mathbf{x}^{(2)}}, \frac{\partial}{\partial \mathbf{x}^{(3)}} \right) \cdot \mathbf{y}$$

Gradient of  $\mathbf{y}$ ; row vector of partials

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \cdot \mathbf{y} = \left( \frac{\partial}{\partial \mathbf{x}^{(1)}}, \frac{\partial}{\partial \mathbf{x}^{(2)}}, \frac{\partial}{\partial \mathbf{x}^{(3)}} \right) \cdot \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \\ \mathbf{y}^{(3)} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{y}^{(1)}}{\partial \mathbf{x}^{(1)}} & \frac{\partial \mathbf{y}^{(1)}}{\partial \mathbf{x}^{(2)}} & \frac{\partial \mathbf{y}^{(1)}}{\partial \mathbf{x}^{(3)}} \\ \cdots & \cdots & \cdots \\ \frac{\partial \mathbf{y}^{(3)}}{\partial \mathbf{x}^{(1)}} & \frac{\partial \mathbf{y}^{(3)}}{\partial \mathbf{x}^{(2)}} & \frac{\partial \mathbf{y}^{(3)}}{\partial \mathbf{x}^{(3)}} \end{bmatrix}$$

Jacobian;  $\cdot$  is Kronecker product (also  $\odot$ )

$$\frac{\partial Y}{\partial \mathbf{x}} = \left( \frac{\partial}{\partial \mathbf{x}^{(1)}}, \frac{\partial}{\partial \mathbf{x}^{(2)}}, \frac{\partial}{\partial \mathbf{x}^{(3)}} \right) \cdot Y = \left[ \frac{\partial}{\partial \mathbf{x}^{(1)}} Y \frac{\partial}{\partial \mathbf{x}^{(2)}} Y \frac{\partial}{\partial \mathbf{x}^{(3)}} Y \right]$$

# Backpropagation Background: Vector Calculus notations

$$\frac{\partial y}{\partial X} = \begin{bmatrix} \frac{\partial}{\partial X^{(1,1)}} & \frac{\partial}{\partial X^{(1,2)}} \\ \frac{\partial}{\partial X^{(2,1)}} & \frac{\partial}{\partial X^{(2,2)}} \end{bmatrix} \cdot y$$

$$\frac{\partial \mathbf{y}}{\partial X} = \begin{bmatrix} \frac{\partial}{\partial X^{(1,1)}} & \frac{\partial}{\partial X^{(1,2)}} \\ \frac{\partial}{\partial X^{(2,1)}} & \frac{\partial}{\partial X^{(2,2)}} \end{bmatrix} \cdot \mathbf{y} = \left[ \begin{bmatrix} \frac{\partial}{\partial X^{(1,1)}} & \frac{\partial}{\partial X^{(1,2)}} \\ \frac{\partial}{\partial X^{(2,1)}} & \frac{\partial}{\partial X^{(2,2)}} \end{bmatrix} \cdot \mathbf{y}^{(1)} \quad \begin{bmatrix} \frac{\partial}{\partial X^{(1,1)}} & \frac{\partial}{\partial X^{(1,2)}} \\ \frac{\partial}{\partial X^{(2,1)}} & \frac{\partial}{\partial X^{(2,2)}} \end{bmatrix} \cdot \mathbf{y}^{(2)} \quad \begin{bmatrix} \frac{\partial}{\partial X^{(1,1)}} & \frac{\partial}{\partial X^{(1,2)}} \\ \frac{\partial}{\partial X^{(2,1)}} & \frac{\partial}{\partial X^{(2,2)}} \end{bmatrix} \cdot \mathbf{y}^{(3)} \right]$$

$$\frac{\partial Y}{\partial X} = \begin{bmatrix} \frac{\partial}{\partial X^{(1,1)}} & \frac{\partial}{\partial X^{(1,2)}} \\ \frac{\partial}{\partial X^{(2,1)}} & \frac{\partial}{\partial X^{(2,2)}} \end{bmatrix} \cdot Y = \begin{bmatrix} \frac{\partial}{\partial X^{(1,1)}} & \frac{\partial}{\partial X^{(1,2)}} \\ \frac{\partial}{\partial X^{(2,1)}} & \frac{\partial}{\partial X^{(2,2)}} \end{bmatrix} \begin{bmatrix} Y^{(1,1)} & Y^{(1,2)} \\ Y^{(2,1)} & Y^{(2,2)} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \frac{\partial Y^{(1,1)}}{\partial X^{(1,1)}} & \frac{\partial Y^{(1,1)}}{\partial X^{(1,2)}} \\ \frac{\partial Y^{(1,1)}}{\partial X^{(2,1)}} & \frac{\partial Y^{(1,1)}}{\partial X^{(2,2)}} \end{bmatrix} & \begin{bmatrix} \frac{\partial Y^{(1,2)}}{\partial X^{(1,1)}} & \frac{\partial Y^{(1,2)}}{\partial X^{(1,2)}} \\ \frac{\partial Y^{(1,2)}}{\partial X^{(2,1)}} & \frac{\partial Y^{(1,2)}}{\partial X^{(2,2)}} \end{bmatrix} \\ \dots & \dots \\ \begin{bmatrix} \frac{\partial Y^{(2,2)}}{\partial X^{(1,1)}} & \frac{\partial Y^{(2,2)}}{\partial X^{(1,2)}} \\ \frac{\partial Y^{(2,2)}}{\partial X^{(2,1)}} & \frac{\partial Y^{(2,2)}}{\partial X^{(2,2)}} \end{bmatrix} & \begin{bmatrix} \frac{\partial Y^{(2,2)}}{\partial X^{(1,1)}} & \frac{\partial Y^{(2,2)}}{\partial X^{(1,2)}} \\ \frac{\partial Y^{(2,2)}}{\partial X^{(2,1)}} & \frac{\partial Y^{(2,2)}}{\partial X^{(2,2)}} \end{bmatrix} \end{bmatrix}$$

# Backpropagation and Gradient-Based Training

2-Layer Network:  $d=3$ ,  $m=4$ ,  $k=2$

$$\begin{aligned}\mathbf{h} &= f(\mathbf{z}^{(1)} = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) \\ \hat{\mathbf{y}} &= \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}\end{aligned}$$

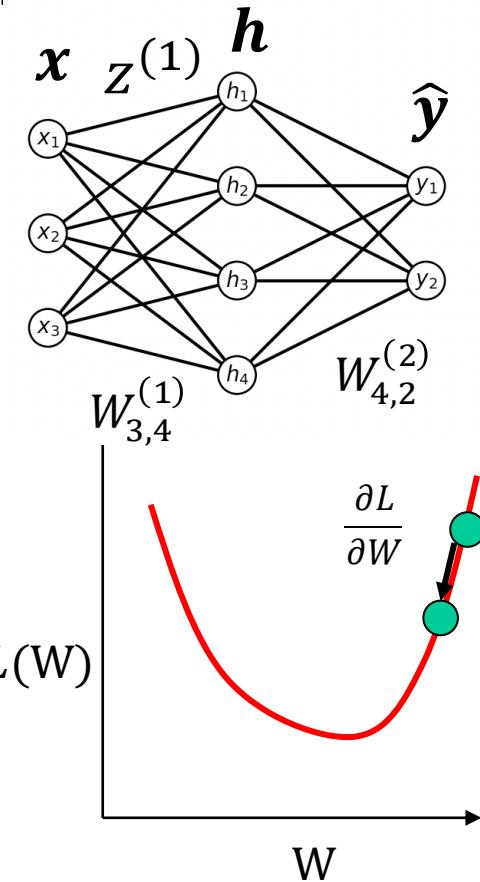
For pose regression:  $L = -\frac{1}{N} \sum_{i=1}^N \|\hat{\mathbf{y}}_i - \mathbf{y}_i\|_2^2$

## Computing Gradients (Backprop):

- We compute  $\frac{\partial L}{\partial \mathbf{W}^{(2)}}$ ,  $\frac{\partial L}{\partial \mathbf{b}^{(2)}}$ ,  $\frac{\partial L}{\partial \mathbf{W}^{(1)}}$ ,  $\frac{\partial L}{\partial \mathbf{b}^{(1)}}$  using chain rule
- For example:  $\frac{\partial L}{\partial \mathbf{W}^{(2)}} = \frac{\partial L}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{W}^{(2)}} = \left( \frac{\partial L}{\partial \hat{\mathbf{y}}} \right) \mathbf{h}^\top$

## Gradient Descent Update: With learning rate $\eta$

$$\mathbf{W}^{(l)} := \mathbf{W}^{(l)} - \eta \frac{\partial L}{\partial \mathbf{W}^{(l)}}, \quad \mathbf{b}^{(l)} := \mathbf{b}^{(l)} - \eta \frac{\partial L}{\partial \mathbf{b}^{(l)}}$$



$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} w_{11}h_1 + w_{12}h_2 + w_{13}h_3 + b_1 \\ w_{21}h_1 + w_{22}h_2 + w_{23}h_3 + b_2 \end{bmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{W}} = \begin{bmatrix} \frac{\partial}{\partial W^{(1,1)}} & \frac{\partial}{\partial W^{(1,2)}} & \frac{\partial}{\partial W^{(1,3)}} \\ \frac{\partial}{\partial W^{(2,1)}} & \frac{\partial}{\partial W^{(2,2)}} & \frac{\partial}{\partial W^{(2,3)}} \end{bmatrix} \odot \mathbf{y}^T$$

$$\begin{bmatrix} \begin{bmatrix} \frac{\partial}{\partial W^{(1,1)}} & \frac{\partial}{\partial W^{(1,2)}} & \frac{\partial}{\partial W^{(1,3)}} \\ \frac{\partial}{\partial W^{(2,1)}} & \frac{\partial}{\partial W^{(2,2)}} & \frac{\partial}{\partial W^{(2,3)}} \end{bmatrix} w_{11}h_1 + w_{12}h_2 + w_{13}h_3 + b_1 & \begin{bmatrix} \frac{\partial}{\partial W^{(1,1)}} & \frac{\partial}{\partial W^{(1,2)}} & \frac{\partial}{\partial W^{(1,3)}} \\ \frac{\partial}{\partial W^{(2,1)}} & \frac{\partial}{\partial W^{(2,2)}} & \frac{\partial}{\partial W^{(2,3)}} \end{bmatrix} w_{21}h_1 + w_{22}h_2 + w_{23}h_3 + b_2 \end{bmatrix}.$$

$$\begin{bmatrix} \begin{bmatrix} h_1 & h_2 & h_3 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 \\ h_1 & h_2 & h_3 \end{bmatrix} \end{bmatrix} = I \odot h^T$$

# Vanishing gradient problem

Consider MLP with:

- Input  $x \in \mathbb{R}^d$
- 3 hidden layers, each with **sigmoid**.
- 1 output  $\hat{y} \in \mathbb{R}$  for a regression or binary classification.

That is

$$1. z^{(1)} = W^{(1)}x + b^{(1)} \in \mathbb{R}^m$$

$$2. a^{(1)} = \sigma(z^{(1)}) \in \mathbb{R}^m$$

$$3. z^{(i)} = W^{(i)}a^{(i-1)} + b^{(i)} \in \mathbb{R}^m, i = 2,3,4$$

$$4. a^{(i)} = \sigma(z^{(i)}) \in \mathbb{R}^m, i = 2,3$$

$$5. \hat{y} = \sigma(z^{(4)}) \in \mathbb{R}^m$$

$$\text{Loss L} = \frac{1}{2}(\hat{y} - y)^2$$

# As the number of layers increase gradient can vanish

$$\frac{\partial L}{\partial z^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{(4)}} = (\hat{y} - y) \frac{\partial \hat{y}}{\partial z^{(4)}} = (\hat{y} - y) \hat{y}(1 - \hat{y})$$

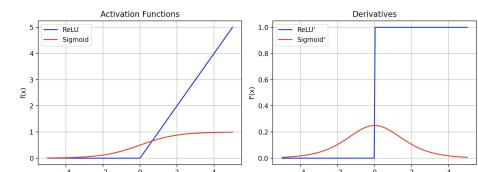
$$\frac{\partial L}{\partial a^{(3)}} = \frac{\partial L}{\partial z^{(4)}} \frac{\partial z^{(4)}}{\partial a^{(3)}} = (\hat{y} - y) \hat{y}(1 - \hat{y}) \cdot W^{(4)}$$

$$\frac{\partial L}{\partial z^{(3)}} = \frac{\partial L}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial z^{(3)}} = (\hat{y} - y) \hat{y}(1 - \hat{y}) \cdot W^{(4)} \odot \sigma'(z^{(3)})$$

$$\frac{\partial L}{\partial z^{(\ell)}} = \frac{\partial L}{\partial z^{(\ell+1)}} W^{\ell+1} \sigma'(z^{(\ell)})$$

If each  $\sigma'(z^{(\ell)}) \leq 0.25$  the gradient vanishes

$$\begin{aligned} z^{(1)} &= W^{(1)}x + b^{(1)} \\ a^{(1)} &= \sigma(z^{(1)}) \\ z^{(2)} &= W^{(2)}a^{(1)} + b^{(2)} \\ a^{(2)} &= \sigma(z^{(2)}) \\ z^{(3)} &= W^{(3)}a^{(2)} + b^{(3)} \\ a^{(3)} &= \sigma(z^{(3)}) \\ z^{(4)} &= W^{(4)}a^{(3)} + b^{(4)} \\ \hat{y} &= \sigma(z^{(4)}) \\ L &= \frac{1}{2}(\hat{y} - y)^2 \end{aligned}$$



$$\sigma(z) = \frac{e^z}{1+e^z} \quad \sigma'(z) = \sigma(z)(1 - \sigma(z))$$

# Exploding gradient problem

Consider MLP with:

- Input  $x \in \mathbb{R}^d$
- 3 hidden layers, each with **ReLU**.
- 1 output  $\hat{y} \in \mathbb{R}$  for a regression or binary classification.

That is

$$1. z^{(1)} = W^{(1)}x + b^{(1)} \in \mathbb{R}^m = \alpha Ix \text{ for simplicity } b^{(i)} = 0 \quad W^{(i)} = \alpha I$$

$$2. a^{(1)} = \text{ReLU}(z^{(1)}) = \alpha x \text{ if } a^{(1)} \text{ is positive in each component}$$

$$3. z^{(i)} = \alpha I a^{(i-1)} = \alpha^i x, i = 2,3,4$$

$$4. a^{(i)} = \text{ReLU}(z^{(i)}) = \alpha^i x, i = 2,3$$

$$5. \hat{y} = \text{ReLU}(z^{(4)}) = \alpha^4 x$$

$$\text{Loss } L = \frac{1}{2}(\hat{y} - y)^2$$

# Exploding gradient continued

$$\frac{\partial L}{\partial z^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{(4)}} = \alpha^4 x - y. 1$$

$$\frac{\partial L}{\partial a^{(3)}} = \frac{\partial L}{\partial z^{(4)}} \frac{\partial z^{(4)}}{\partial a^{(3)}} = (\alpha^4 x - y. 1) \alpha I$$

$$\frac{\partial L}{\partial z^{(3)}} = \frac{\partial L}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial z^{(3)}} = (\alpha^4 x - y. 1) \alpha. 1$$

$$\frac{\partial L}{\partial a^{(2)}} = \frac{\partial L}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial a^{(2)}} = (\alpha^4 x - y. 1) \alpha \alpha. I = \alpha^2 (\alpha^4 x - y. 1)$$

...

$$\frac{\partial L}{\partial a^{(1)}} = \alpha^3 (\alpha^4 x - y. 1)$$

$$z^{(1)} = W^{(1)} x + b^{(1)} = \alpha I x$$

$$a^{(1)} = \text{ReLU}(z^{(1)}) = \alpha x$$

$$z^{(i)} = \alpha I a^{(i-1)}$$

$$a^{(i)} = \text{ReLU}(z^{(i)})$$

$$\hat{y} = \text{ReLU}(z^{(4)})$$

$$L = \frac{1}{2} (\hat{y} - y)^2$$

If  $\alpha \gg 1$  the factor  $\alpha^3$  explodes in the gradient computation

Caution: Sigmoid activations clip the gradient and can lead to vanishing gradients

ReLU can make the gradients large

## Further readings on NN architectures

MLP:  $x_{\ell+1} = \sigma(W_\ell x_\ell + b_\ell)$

ResNets:  $x_{\ell+1} = x_\ell + \frac{1}{L} U_\ell^T \sigma(V_\ell x_\ell + b_\ell)$ ,  $U_\ell, V_\ell$  are the weight matrices and  $L$  is the number of layers, can avoid issues with gradient collapse

Neural ODEs: As the number of layers approaches  $L \rightarrow \infty$  ResNets can be seen as a discretization of  $\frac{dx_s}{ds} = U_s^T \sigma(V_s x_s + b_s)$

He, Zhang, Ren, and Sun. Deep residual learning for image recognition. CVPR, 2016.

Chen, Rubanova, Bettencourt, and K Duvenaud. Neural ordinary differential equations. NeuRIPs, 2018.

# Example NN training in Python: Setup

```
# Dataset: a circle N = 200 # samples
```

```
X = np.random.randn(N, 2) # shape: (N, 2) r = 1.0
```

```
Y = (X[:,0]**2 + X[:,1]**2 < r**2).astype(np.float32) shape: (N, 1) 0 or 1
```

```
# Define NN architecture
```

```
input_dim = 2 hidden_dim = 8 output_dim = 1 # binary classification
```

```
# Initialize NN: small random values for weights, and zeros for biases
```

```
W1 = 0.01 * np.random.randn(input_dim, hidden_dim) # shape: (2, 8)
```

```
b1 = np.zeros((1, hidden_dim)) # shape: (1, 8)
```

```
W2 = 0.01 * np.random.randn(hidden_dim, output_dim) # shape: (8, 1)
```

```
b2 = np.zeros((1, output_dim)) # shape: (1, 1)
```

```
def compute_loss(Y_pred, Y_true): # Cross-entropy loss:  $L = -\frac{1}{N} \sum_i y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$ 
    return -1/N*sum(Y_true*log(Y_pred+epsilon) + (1-Y_true)*log(1 - Y_pred+epsilon))
```

```
# Training loop
```

```
learning_rate = 0.05 num_iterations = 1000
```

```
for i in range(num_iterations):
```

```
    # Forward pass Layer 1:  $Z1 = XW1 + b1$ ; Layer 2:  $Z2 = A1W2 + b2$ 
```

```
    Z1 = np.dot(X, W1) + b1 # shape: (N, 8)
```

```
    A1 = relu(Z1) # shape: (N, 8)
```

```
    Z2 = np.dot(A1, W2) + b2 # shape: (N, 1)
```

```
    A2 = sigmoid(Z2) # Y_pred
```

```
    loss = compute_loss(A2, Y)
```

```
# Backward pass; For cross-entropy and sigmoid,  $dL/dZ2 = A2 - Y$ 
```

```
dZ2 = A2 - Y # shape: (N, 1)
```

```
dW2 = np.dot(A1.T, dZ2) # shape: (8, 1)
```

```
dB2 = np.sum(dZ2, axis=0, keepdims=True) # shape: (1,1)
```

```
dA1 = np.dot(dZ2, W2.T) # shape: (N,8)
```

```
dZ1 = dA1 * relu_derivative(Z1) # shape: (N,8)
```

```
dW1 = np.dot(X.T, dZ1) # shape: (2,8)
```

```
dB1 = np.sum(dZ1, axis=0, keepdims=True) # shape: (1,8)
```

```
# Update parameters
```

```
W1 -= learning_rate * dW1
```

```
b1 -= learning_rate * dB1
```

```
W2 -= learning_rate * dW2
```

```
b2 -= learning_rate * dB2
```

# Example in Pytorch

```
class TwoLayerNet(nn.Module):
    def __init__(self, input_dim=2, hidden_dim=8, output_dim=1):
        super(TwoLayerNet, self).__init__()
        self.layer1 = nn.Linear(input_dim, hidden_dim) # W1, b1
        self.layer2 = nn.Linear(hidden_dim, output_dim) # W2, b2

    def forward(self, x): # x shape: (N, 2)
        z1 = self.layer1(x)  a1 = self.relu(z1)  z2 = self.layer2(a1)
        y_hat = self.sigmoid(z2)
        return y_hat

# 2layer NN Binary Cross Entropy ; SGD
model = TwoLayerNet() criterion = nn.BCELoss()  optimizer = optim.SGD(...)
for i in range(num_iterations):          # Training loop
    optimizer.zero_grad()                # 1. Zero the parameter gradients
    y_pred = model(X_torch)             # 2. Forward pass
    loss = criterion(y_pred, Y_torch)    # 3. Compute loss
    loss.backward()                     # 4. Backward pass (compute gradients)
    optimizer.step()                   # 5. Update parameters
```

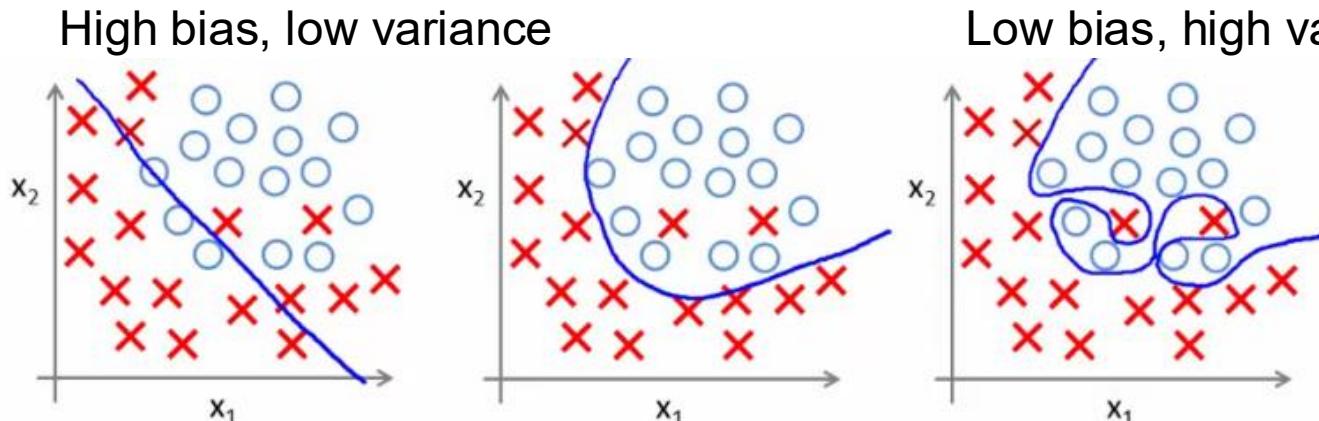
# Bias-variance tradeoff

Training loss/ error of learning algorithms has two main components:

- **Bias**: error due to simplifying model assumptions
- **Variance**: error due to randomness of training set

**Bias-variance tradeoff** can be tuned with hyperparameters during the **validation phase**

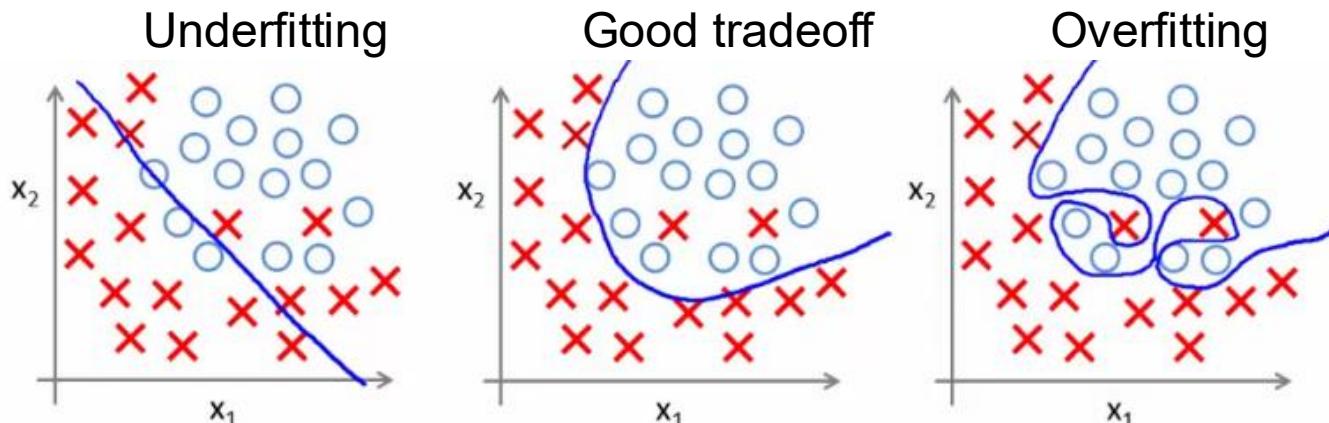
- E.g. hyperparameters: number of layers, activation type, network architecture, etc.



[Figure source](#)

# Under and overfitting

- **Underfitting:** training and test error are both *high*
  - Model does an equally poor job on the training and the test set
  - The model is too “simple” to represent the data or the model is not trained well
- **Overfitting:** Training error is *low* but test error is *high*
  - Model fits irrelevant characteristics (noise) in the training data
  - Model is too complex or amount of training data is insufficient



[Figure source](#)

# Best practices for training classifiers

Goal: obtain a classifier with **good generalization** or performance on never before seen data

1. Learn *parameters* on the **training set**
2. Tune *hyperparameters* on the *held out validation set*
3. Evaluate performance on the **test set**

Crucial: do not peek at the test set when iterating steps 1 and 2!

